Urinary fluoride as a monitoring tool for assessing successful intervention in the provision of safe drinking water supply in five fluoride-affected villages in Dhar district, Madhya Pradesh, India

2012 ◽  
Vol 185 (3) ◽  
pp. 2343-2350 ◽  
Author(s):  
R. Srikanth ◽  
Anil Gautam ◽  
Suresh Chandra Jaiswal ◽  
Pavitra Singh
2008 ◽  
Vol 8 (5) ◽  
pp. 527-532 ◽  
Author(s):  
K. Henne ◽  
L. Kahlisch ◽  
J. Draheim ◽  
I. Brettar ◽  
M. G. Höfle

Despite the relevance for public health, surveillance of drinking water supply systems (DWSS) in Europe is mainly achieved by cultivation based detection of indicator bacteria. The study presented here demonstrates the use of molecular analysis based on fingerprints of DNA extracted from drinking water bacteria as a valuable monitoring tool of DWSS and was exemplified for a DWWS in Northern Germany. The analysis of the bacterial community of drinking water was performed by a set of 16S rRNA gene based fingerprints, sequence analysis of relevant bands and phylogenetic assignment of the 16S rRNA sequences. We assessed the microflora of drinking water originating from two reservoirs in the Harz Mountains. The taxonomic composition of the bacterial communities from both reservoirs was very different at the species level reflecting the different limnological conditions. Detailed analysis of the seasonal community dynamics of the tap water revealed a significant influence of both source waters on the composition of the microflora and demonstrated the relevance of the raw water microflora for the drinking water reaching the consumer. According to our experience, molecular analysis based on fingerprints of different degrees of resolution can be considered as a valuable monitoring tool of DWSS.


2020 ◽  
Author(s):  
JING LI ◽  
Kenenth M Person ◽  
Heidi Pekar ◽  
Daniel Jansson

Abstract Background: Cyanobacterial blooms are of increasing concern for drinking water supply. Cyanobacterial risk in 108 temperate freshwater lakes were examined for drinking water supply. Results: In Sweden, a survey among drinking water producers showed that the sense of urgency was little. At 60 % of the Swedish drinking water treatment plants, operators lacked monitoring strategies. The study shows that blooms can produce a variety of toxins such as anatoxins, cylindrospermopsins, microcystins and saxitoxins. We confirmed the anthropogenic activities’ impact on cyanobacterial risk and evaluated that total phosphorus (TP) concentration can be used to indicate cyanobacterial risk by applying non-linear quantile regression for 108 Swedish monitoring lakes.Conclusion: We suggest that TP concentration should be investigated thoroughly to provide important knowledge which can be used to set nutrient targets to sustain safe drinking water supply and recreational services.TP should be targeted lower than 15 μg L-1, allowing 10 % exceedance of WHO Drinking Water Alert Level 1.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2085
Author(s):  
Zuleikha Pembe-Ali ◽  
Tulinave Burton Mwamila ◽  
Mesia Lufingo ◽  
Willis Gwenzi ◽  
Janeth Marwa ◽  
...  

There is escalating salinity levels on small islands due to uncontrolled groundwater extraction. Conventionally, this challenge is addressed by adopting optimal groundwater pumping strategies. Currently, on Unguja Island (Zanzibar), urban freshwater is supplied by desalination, which is expensive and energy-intensive. Hence, desalinization cannot be afforded by rural communities. This study demonstrates that the innovative Kilimanjaro Concept (KC), based on rainwater harvesting (RWH) can remediate seawater intrusion in Unguja, while enabling a universal safe drinking water supply. The reasoning is rooted in the water balance of the whole island. It is shown that if rainwater is systematically harvested, quantitatively stored, and partly infiltrated, seawater intrusion will be reversed, and a universal safe drinking water supply will be secured. Water treatment with affordable technologies (e.g., filtration and adsorption) is suggested. The universality of KC and its suitability for small islands is demonstrated. Future research should focus on pilot testing of this concept on Unguja Island and other island nations.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1032
Author(s):  
Minhaz Farid Ahmed ◽  
Mazlin Bin Mokhtar ◽  
Nuriah Abd Majid

Populations in the Langat River Basin, Malaysia, frequently experience water supply disruption due to the shutdown of water treatment plants (WTPs) mainly from the chemical pollution as well as point and non-point sources of pollution. Therefore, this study investigated the aluminium (Al), arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb) concentrations in the drinking water supply chain at the basin because of its prolonged persistence and toxic characteristics in the aquatic environment. Three replicates of water samples were collected from the river, outlets of WTPs, household tap and filtered water, respectively, in 2015, for analysis by Inductively Coupled Plasma Mass Spectrometry. Higher concentration of these metals was found in household tap water than in the treated water at the WTPs; however, the concentration of these metals at the four stages of the drinking water supply chain conformed to the drinking water quality standard set by the World Health Organization. The Mann-Whitney and Kruskal-Wallis tests also found that metal concentration removal significantly varied among the eight WTPs as well as the five types of household water filtration systems. With regards to the investigated household filtered water, the distilled filtration system was found to be more effective in removing metal concentration because of better management. Therefore, a two-layer water filtration system could be introduced in the Langat River Basin to obtain safe drinking water supply at the household level.


Sign in / Sign up

Export Citation Format

Share Document