EXPERIMENTAL INVESTIGATION OF THE EFFECT OF MECHANICAL LOADING ON THERMAL TRANSPORT IN CERAMIC MATRIX COMPOSITES

2009 ◽  
Vol 01 (03n04) ◽  
pp. 403-431 ◽  
Author(s):  
MOHAMMED A. SHEIKH ◽  
DAVID R. HAYHURST ◽  
SARAH C. TAYLOR ◽  
ROY TAYLOR

This paper presents the results of experimental measurements of transverse thermal diffusivity for six different industrial Ceramic Matrix Composite materials under the action of in-plane uni-axial mechanical loading. Measurements have also been taken using a one-dimensional Laser Flash technique on 8 mm diameter disc specimens without mechanical load. These results have been used to benchmark data obtained using a three-dimensional Laser Flash rig developed to operate on large mechanical test specimens whilst being loaded in a test machine. The latter facility has been used to measure the degradation of transverse thermal diffusivity with uni-axial strain. For five of the composites tested the degradation of transverse thermal diffusivity was small; and the degradation of transverse thermal diffusivity was linear with strain. One composite showed evidence of fibre pullout, and a decrease of transverse thermal diffusivity to a low value. The different behaviours observed were believed to be associated with the weave type/composite lay-up, and the selection of composite constituent materials, although insufficient data is available to make general conclusions.

Author(s):  
K. Elliott Cramer ◽  
William P. Winfree ◽  
Edward R. Generazio ◽  
Ramakrishna Bhatt ◽  
Dennis S. Fox ◽  
...  

Strong, tough, high temperature ceramic matrix composites are currently being developed for application in advanced heat engines. One of the most promising of these new materials is a SiC fiber-reinforced silicon nitride ceramic matrix composite (SiCf/Si3N4). The interfacial shear strength in such composites is dependant on the integrity of the fiber’s carbon coating at the fiber-matrix interface. The integrity of the carbon rich interface can be significantly reduced if the carbon is oxidized. Since the thermal diffusivity of the fiber is greater than that of the matrix material, the removal of carbon increases the contact resistance at the interface reducing the thermal diffusivity of the composite. Therefore thermal diffusivity images can be used to characterize the progression of carbon depletion and degradation of the composite. A new thermal imaging technique has been developed to provide rapid large area measurements of the thermal diffusivity perpendicular to the fiber direction in these composites. Results of diffusivity measurements will be presented for a series of SiCf/Si3N4 (reaction bonded silicon nitride) composite samples heat-treated under various conditions. Additionally, the ability of this technique to characterize damage in both ceramic and other high temperature composites will be shown.


2020 ◽  
Vol 299 ◽  
pp. 37-42
Author(s):  
O.A. Fomina ◽  
Andrey Yu. Stolboushkin

A model of the transition layer between the shell and the core of a ceramic matrix composite from coal waste and clay has been developed. The chemical, granulometric and mineral compositions of the beneficiation of carbonaceous mudstones and clay were studied. The technological and ceramic properties of raw materials for the samples manufacturing were determined. The method of manufacturing multilayer ceramic samples from coal waste, clay and their mixture is given. The number of transition layers in the contact zone between the clay shell and the core from coal wastes is determined. The deformation and swelling phenomena of model samples from coal wastes, clay, and their mixtures were revealed at the firing temperature of more than 1000 °C. The formation of a reducing ambient in the center of the sample with insufficient air flow is shown. The influence of the carbonaceous particles amount and the ferrous form iron oxide in the coal wastes on the processes of expansion of multilayer samples during firing has been established.


2000 ◽  
Vol 122 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Karren L. More ◽  
Peter F. Tortorelli ◽  
Mattison K. Ferber ◽  
Larry R. Walker ◽  
James R. Keiser ◽  
...  

A high-temperature, high-pressure, tube furnace has been used to evaluate the long term stability of different monolithic ceramic and ceramic matrix composite materials in a simulated combustor environment. All of the tests have been run at 150 psia, 1204°C, and 15 percent steam in incremental 500 h runs. The major advantage of this system is the high sample throughput; >20 samples can be exposed in each tube at the same time under similar exposure conditions. Microstructural evaluations of the samples were conducted after each 500 h exposure to characterize the extent of surface damage, to calculate surface recession rates, and to determine degradation mechanisms for the different materials. The validity of this exposure rig for simulating real combustor environments was established by comparing materials exposed in the test rig and combustor liner materials exposed for similar times in an actual gas turbine combustor under commercial operating conditions. [S0742-4795(00)02402-9]


Author(s):  
Michael J. Walock ◽  
Vann Heng ◽  
Andy Nieto ◽  
Anindya Ghoshal ◽  
Muthuvel Murugan ◽  
...  

Future gas turbine engines will operate at significantly higher temperatures (∼1800 °C) than current engines (∼1400 °C) for improved efficiency and power density. As a result, the current set of metallic components (titanium-based and nickel-based superalloys) will be replaced with ceramics and ceramic matrix composites (CMCs). These materials can survive the higher operating temperatures of future engines at significant weight savings over the current metallic components, i.e., advanced ceramic components will facilitate more powerful engines. While oxide-based CMCs may not be suitable candidates for hot-section components, they may be suitable for structural and/or exhaust components. However, a more thorough understanding of the performance under relevant environment of these materials is needed. To this end, this work investigates the high-temperature durability of a family of oxide–oxide CMCs (Ox–Ox CMCs) under an engine-relevant environment. Flat Ox–Ox CMC panels were cyclically exposed to temperatures up to 1150 °C, within 240 m/s (∼0.3 M) gas flows and hot sand impingement. Front and backside surface temperatures were monitored by a single-wavelength (SW) pyrometer and thermocouple, respectively. In addition, an infrared (IR) camera was used to evaluate the damage evolution of the samples during testing. Flash thermography nondestructive evaluation (NDE) was used to elucidate defects present before and after thermal exposure.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Hye-gyu Kim ◽  
Wooseok Ji ◽  
Nam Choon Cho ◽  
Jong Kyoo Park

Microstructural fracture behavior of a ceramic matrix composite (CMC) with nonuniformly distributed fibers is studied in the presentation. A comprehensive numerical analysis package to study the effect of nonuniform fiber dimensions and locations on the microstructural fracture behavior is developed. The package starts with an optimization algorithm for generating representative volume element (RVE) models that are statistically equivalent to experimental measurements. Experimentally measured statistical data are used as constraints while the optimization algorithm is running. Virtual springs are utilized between any adjacent fibers to nonuniformly distribute the coated fibers in the RVE model. The virtual spring with the optimization algorithm can efficiently generate multiple RVEs that are statistically identical to each other. Smeared crack approach (SCA) is implemented to consider the fracture behavior of the CMC material in a mesh-objective manner. The RVEs are subjected to tension as well as the shear loading conditions. SCA is capable of predicting different fracture patterns, uniquely defined by not only the fiber arrangement but also the specific loading type. In addition, global stress-strain curves show that the microstructural fracture behavior of the RVEs is highly dependent on the fiber distributions.


Author(s):  
Rajesh S. Kumar ◽  
Matthew M. Mordasky

Abstract Foreign object impact of Ceramic Matrix Composite (CMC) materials and components in a gas turbine engine environment could be detrimental to engine performance and hence must be accounted for in the design of such components. This paper is concerned with experiments and computational modeling of foreign object impact phenomenon in Silicon Carbide-based CMC. Controlled impact experiments were conducted on the CMC material using a gas-gun apparatus with spherical hardened steel projectile. The internal damage state within the CMC specimens was assessed using X-ray computed tomography scan technique. The computational modeling involved explicit dynamic finite element simulation of the impact process wherein either delamination mechanism is modeled or both ply damage and delamination mechanisms are modeled in a coupled manner. The delamination mechanism is modeled explicitly using cohesive-zone fracture mechanics approach, whereas, the ply damage mechanisms are modeled implicitly using simplified continuum damage mechanics approach. The simulation results were found to be in reasonable qualitative and quantitative agreement with the experimental results. Furthermore, it is shown that modeling both the ply damage and delamination mechanisms are essential to predict the correct delamination pattern even for intermediate velocity impacts that leads to predominantly delamination damage. The predictive nature of the modeling approach is demonstrated and approaches to enhance the models are also discussed.


Author(s):  
M. J. Presby ◽  
C. Gong ◽  
S. Kane ◽  
N. Kedir ◽  
A. Stanley ◽  
...  

Abstract Erosion phenomenon of ceramic matrix composites (CMCs), attributed to their unique architectural configurations, is markedly different from conventional monolithic ceramic counterparts. Prior to further integration of CMCs into hot-section components of aeroengines subject to erosive environments, their erosion behavior needs to be characterized, analyzed, and formulated. The erosion behavior of a 2-D woven melt-infiltrated (MI) SiC/SiC CMC was assessed in this work as a function of variables such as particle velocity and size. The erosion damage was characterized using appropriate analytical tools such as optical and scanning electron microscopy (SEM). A phenomenological erosion model was developed for SiC/SiC CMC material systems with respect to kinetic energy of impacting particles in conjunction with nominal density, matrix hardness and elastic modulus of the SiC/SiC CMCs. The model was in reasonable agreement with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document