A MULTIPHASE ANALYSIS FOR ENVIRONMENTAL IMPACT ASSESSMENT WITH θ-STOCK FINITE ELEMENT PROGRAM

2010 ◽  
Vol 02 (01n02) ◽  
pp. 23-68 ◽  
Author(s):  
B. GATMIRI ◽  
S. HEMMATI ◽  
C. ARSON ◽  
E. AMIRZEHNI

In the THM modeling of multiphase medium, the coupling effects of skeleton, suction, and temperature have been integrated via the concept of state surfaces of void ratio and degree of saturation. Based on proposed formulation, a fully coupled numerical model for the behavior of soil deformation, water flow, air flow, heat flow in unsaturated soil has been developed and integrated in a finite element code θ-Stock by the first author. This program is conceived with this idea that it will be able to analyze the response of a soil in different states of humidity to mechanical, thermal loading, and also damage phenomena. Damage model is dedicated to unsaturated brittle rocks. It mixes phenomenological and micromechanical concepts and is formulated based on the use of independent state variables. The expression of the liquid permeability is modified in order to represent the influence of fracturing on interstitial fluid flows. The final matrix form of established field equations of the proposed model for unsaturated case has been encoded for this particular purpose, in a finite element program which had been developed for dry and saturated soils previously.

2012 ◽  
Vol 04 (02) ◽  
pp. 1250008
Author(s):  
MARZIYEH FATHALIKHANI ◽  
BEHROUZ GATMIRI

In this paper, the theoretical framework of a coupled thermo-hydro-mechanical damage model dedicated to non-isothermal unsaturated porous media is presented. The damage variable is a second-order tensor, and the model has been formulated in independent state variables. The approach combines thermodynamic and micromechanical theories. The behavior laws have been derived from a postulated expression of Helmholtz free energy. The damaged rigidities have been computed by applying the Principle of Equivalent Elastic Energy (PEEE). Internal length parameters have been introduced in the expressions of liquid water conductivity, to account for cracking effects on fluid flows. Damage has been assumed to have an isotropic influence on air and heat flows, through the inelastic component of volumetric strains. The damage model has been implemented in θ-Stock Finite Element program. Some numerical studies are conducted to the impact of the thermal and mechanical loading on the evaluation of response of the unsaturated bentonite, and investigation of model parameters effect on damage development.


2008 ◽  
Vol 385-387 ◽  
pp. 137-140
Author(s):  
C. Arson ◽  
B. Gatmiri

This paper presents a damage model dedicated to unsaturated brittle rocks. It mixes phenomenological and micro-mechanical concepts, and is formulated based on the use of independent state variables (net stress and suction). The expression of the liquid permeability is modified in order to represent the influence of fracturing on interstitial fluid flows.


2021 ◽  
Vol 37 ◽  
pp. 205-215
Author(s):  
Heng Chen ◽  
Hongmei Cheng ◽  
Aibin Xu ◽  
Yi Xue ◽  
Weihong Peng

ABSTRACT The fracture field of coal and rock mass is the main channel for gas migration and accumulation. Exploring the evolution law of fracture field of coal and rock mass under the condition of drilling and slitting construction has important theoretical significance for guiding efficient gas drainage. The generation and evolution process of coal and rock fissures is also the development and accumulation process of its damage. Therefore, based on damage mechanics and finite element theory, the mathematical model is established. The damage variable of coal mass is defined by effective strain, the elastoplastic damage constitutive equation is established and the secondary development of finite element program is completed by FORTRAN language. Using this program, the numerical simulation of drilling and slitting construction of the 15-14120 mining face of Pingdingshan No. 8 Mine is carried out, and the effects of different single borehole diameters, different kerf widths and different kerf heights on the distribution area of surrounding coal fracture field and the degree of damage are studied quantitatively. These provide a theoretical basis for the reasonable determination of the slitting and drilling arrangement parameters at the engineering site.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


2009 ◽  
Vol 65 ◽  
pp. 19-31
Author(s):  
Ruben Cuamatzi-Melendez ◽  
J.R. Yates

Little work has been published concerning the transferability of Gurson’s ductile damage model parameters in specimens tested at different strain rates and in the rolling direction of a Grade A ship plate steel. In order to investigate the transferability of the damage model parameters of Gurson’s model, tensile specimens with different constraint level and impact Charpy specimens were simulated to investigate the effect of the strain rate on the damage model parameters of Gurson model. The simulations were performed with the finite element program ABAQUS Explicit [1]. ABAQUS Explicit is ideally suited for the solution of complex nonlinear dynamic and quasi–static problems [2], especially those involving impact and other highly discontinuous events. ABAQUS Explicit supports not only stress–displacement analyses but also fully coupled transient dynamic temperature, displacement, acoustic and coupled acoustic–structural analyses. This makes the program very suitable for modelling fracture initiation and propagation. In ABAQUS Explicit, the element deletion technique is provided, so the damaged or dead elements are removed from the analysis once the failure criterion is locally reached. This simulates crack growth through the microstructure. It was found that the variation of the strain rate affects slightly the value of the damage model parameters of Gurson model.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Auchar Zardari ◽  
Hans Mattsson ◽  
Sven Knutsson ◽  
Muhammad Shehzad Khalid ◽  
Maria V. S. Ask ◽  
...  

Much of the seismic activity of northern Sweden consists of micro-earthquakes occurring near postglacial faults. However, larger magnitude earthquakes do occur in Sweden, and earthquake statistics indicate that a magnitude 5 event is likely to occur once every century. This paper presents dynamic analyses of the effects of larger earthquakes on an upstream tailings dam at the Aitik copper mine in northern Sweden. The analyses were performed to evaluate the potential for liquefaction and to assess stability of the dam under two specific earthquakes: a commonly occurring magnitude 3.6 event and a more extreme earthquake of magnitude 5.8. The dynamic analyses were carried out with the finite element program PLAXIS using a recently implemented constitutive model called UBCSAND. The results indicate that the magnitude 5.8 earthquake would likely induce liquefaction in a limited zone located below the ground surface near the embankment dikes. It is interpreted that stability of the dam may not be affected due to the limited extent of the liquefied zone. Both types of earthquakes are predicted to induce tolerable magnitudes of displacements. The results of the postseismic slope stability analysis, performed for a state after a seismic event, suggest that the dam is stable during both the earthquakes.


1981 ◽  
Vol 17 (12) ◽  
pp. 1779-1789
Author(s):  
E. Haugeneder ◽  
W. Prochazka ◽  
P. Tavolato

Sign in / Sign up

Export Citation Format

Share Document