Capacitive Behavior of Sodium Ion Pre-Intercalation Manganese Dioxide Supported on Titanium Nitride Substrate

NANO ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 2050152 ◽  
Author(s):  
Yibing Xie

The sodium ion pre-intercalation manganese dioxide (Na[Formula: see text]MnO[Formula: see text] is supported on titanium nitride (TiN) substrate to form electroactive Na[Formula: see text]MnO2/TiN electrode through an electrodeposition process in Mn(CH3COOH)2/Na2SO4 precursors with high Mn/Na ratio. MnO2 has a tiled leaf-like structure with a wrinkling morphology. Na[Formula: see text]MnO2 has a cross-linking nanorod structure with a nanoporous morphology, which is beneficial for electrolyte ion diffusion. The density functional theory (DFT) calculation results indicate that Na[Formula: see text]MnO2 reveals the enhanced density of states (DOS) and the lowered band gap than MnO2, which is consistent with higher cyclic voltammetry current response due to superior electroactivity of Na[Formula: see text]MnO2. The Faradaic process involves Na[Formula: see text] adsorption/desorption on the surface of MnO2 by contributing to electrochemical capacitance and Na[Formula: see text] intercalation/deintercalation on the deep interlayer of pre-intercalation Na[Formula: see text]MnO2 by contributing to pseudocapacitance. Concerning the electrolyte ion size effect, both MnO2/TiN and Na[Formula: see text]MnO2/TiN electrodes have higher capacitive performance in Li2SO4 electrolyte than that in Na2SO4 and K2SO4 electrolyte due to more feasible Li[Formula: see text] diffusion. When MnO2 is converted into Na[Formula: see text]MnO2, the capacitance at 2.5 mA cm[Formula: see text] increases from 351.3 mF cm[Formula: see text] to 405.6 mF cm[Formula: see text] in Na2SO4 electrolyte and from 376.3 mF cm[Formula: see text] to 465.1 mF cm[Formula: see text] in Li2SO4 electrolyte. The conductive TiN substrate leads to high rate capacity retention ratio of 50.7% for MnO2/TiN and 49.5% for Na[Formula: see text]MnO2/TiN when current density increases from 0.5 mA cm[Formula: see text] to 5 mA cm[Formula: see text]. So, Na[Formula: see text]MnO2/TiN with sodium ion pre-intercalation exhibits the improved capacitive performance in Li2SO4 electrolyte to act well as the promising supercapacitor electrode.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Song Chen ◽  
Shaozhuan Huang ◽  
Junping Hu ◽  
Shuang Fan ◽  
Yang Shang ◽  
...  

Abstract Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries. However, the sluggish reaction kinetics is a big obstacle for the development of high-performance sodium storage electrodes. Herein, we have rationally engineered the heterointerface by designing the Fe1−xS/MoS2 heterostructure with abundant “ion reservoir” to endow the electrode with excellent cycling stability and rate capability, which is proved by a series of in and ex situ electrochemical investigations. Density functional theory calculations further reveal that the heterointerface greatly decreases sodium ion diffusion barrier and facilitates charge-transfer kinetics. Our present findings not only provide a deep analysis on the correlation between the structure and performance, but also draw inspiration for rational heterointerface engineering toward the next-generation high-performance energy storage devices.


2014 ◽  
Vol 1659 ◽  
pp. 163-168
Author(s):  
Lihao Wu ◽  
Yingzhi Li ◽  
Pingping Yu ◽  
Qinghua Zhang

ABSTRACTAmong the transition metal oxides, manganese oxides have been widely studied for electrochemical capacitors and batteries, because of their high energy density, low cost, natural abundance and environmentally friendliness. However, the poor electrical conductivity of manganese dioxide (MnO2) limits its capacitive response. Polyaniline becomes a unique and promising conducting polymer with a great potential application in supercapacitors due to easy synthesis and good conductivity of the conducting material. Combine the two properties can prepare nanocomposite materials in order to improve the conductivity and capacitive performance of the MnO2. MnO2 coated with polyaniline as the coaxial nanowires were prepared in this report. The polyaniline was synthesized via in situ polymerization and we got a controllable thin coating on the well-dispersed MnO2 nanowires. This hybrid nanostructure enhances the conductivity and capacitive performance of the supercapacitor electrode. The specific capacitance of MnO2/PANI composites is as high as 426 F g-1 at 1 A g-1, which is twice much higher than pure MnO2 (188 F g-1) .


RSC Advances ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 1067-1074 ◽  
Author(s):  
Hang Yu ◽  
Wenliang Zhang ◽  
Ting Li ◽  
Lei Zhi ◽  
Liqin Dang ◽  
...  

Porous carbon nanosheets derived from naturally abundant cornstalk are reported as a high rate supercapacitor electrode in aqueous and solid-state PVA–KOH electrolyte.


2018 ◽  
Vol 6 (26) ◽  
pp. 12259-12266 ◽  
Author(s):  
Yalong Jiang ◽  
Shuangshuang Tan ◽  
Qiulong Wei ◽  
Jun Dong ◽  
Qidong Li ◽  
...  

Layered birnessite sodium manganese dioxide exhibits a highly pseudocapacitive sodium storage behavior with non-phase changes in non-aqueous systems, leading to high rate and long-life performance.


2021 ◽  
Vol 233 ◽  
pp. 01084
Author(s):  
Lei Li ◽  
Chun-Sheng Liu

The graphether/graphene vdW heterostructure has been systematically studied as an electrode material for sodium batteries based on density functional theory. We predict that the graphether/graphene heterostructure exhibits low diffusion barrier and large capacity. All these calculation results suggest that the graphether/graphene heterostructure can be used as a future commercial anode material for sodium ion batteries.


Author(s):  
Yibing Xie

Abstract The reduced graphene oxide modified sodium ion-intercalated manganese oxide (RGO-NaxMnO2) is designed as a supercapacitor electrode material. The layered intercalation compound NaxMnO2 is prepared through a solid-state reaction process. RGO-NaxMnO2 is then formed by the chemical reduction of graphene oxide coated NaxMnO2 through a hydrothermal process. RGO-NaxMnO2 is supported on the substrate of nickel form (NF) and titanium nitride (TiN) to form RGO-NaxMnO2/NF and RGO-NaxMnO2/TiN composite electrodes. NaxMnO2 has a particle aggregate structure with the individual particle size of 1–2 µm. RGO-NaxMnO2 composite shows the densely packed arrangement of particles with the particle aggregate size of 8 µm. RGO modification can well improve the electrical conductivity of RGO-NaxMnO2. The current response is highly enhanced from 0.127 A g−1 for NaxMnO2/NF to 0.372 A g−1 for RGO-NaxMnO2/NF at 2 mV s−1. Furthermore, the TiN substrate with superior electrical conductivity and electrochemical anti-corrosion contributes to improving the electrochemical capacitance and cycle stability of RGO-NaxMnO2. RGO-NaxMnO2/TiN reveals higher specific capacitance (244.2 F g−1 at 2.0 A g−1) and higher cycling capacitance retention (99.7%) after 500 cycles at 2.0 A g−1 than RGO-NaxMnO2/NF (177.1 F g−1, 43.6%). So, RGO-NaxMnO2/TiN exhibits much higher capacitive performance than RGO-NaxMnO2/NF, which presents a potential application for electrochemical energy storage.


2020 ◽  
Vol 3 (3) ◽  
pp. 221-234 ◽  
Author(s):  
Qiulong Wei ◽  
Ryan H. DeBlock ◽  
Danielle M. Butts ◽  
Christopher Choi ◽  
Bruce Dunn

ACS Nano ◽  
2021 ◽  
Author(s):  
Jiayin Li ◽  
Rong Wang ◽  
Penghui Guo ◽  
Xing Liu ◽  
Yunfei Hu ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yibing Xie

AbstractA PPY/TiO2/PPY jacket nanotube array was fabricated by coating PPY layer on the external and internal surface of a tube wall-separated TiO2 nanotube array. It shows coaxial triple-walled nanotube structure with two PPY nanotube layers sandwiching one TiO2 nanotube layer. PPY/TiO2/PPY reveals much higher current response than TiO2. The theoretical calculation indicates PPY/TiO2/PPY reveals higher density of states and lower band gap, accordingly presenting higher conductivity and electroactivity, which is consistent with the experimental result of a higher current response. The electroactivity is highly enhanced in H2SO4 rather than Na2SO4 electrolyte due to feasible pronation process of PPY in an acidic solution. PPY/TiO2/PPY could conduct the redox reaction in H2SO4 electrolyte which involves the reversible protonation/deprotonation and HSO4− doping/dedoping process and accordingly contributes to Faradaic pseudocapacitance. The specific capacitance is highly enhanced from 1.7 mF cm−2 of TiO2 to 123.4 mF cm−2 of PPY/TiO2/PPY at 0.1 mA cm−2 in H2SO4 electrolyte. The capacitance also declines from 123.4 to 31.7 mF cm−2 when the current density increases from 0.1 to 1 mA cm−2, presenting the rate capacitance retention of 26.7% due to the semiconductivity of TiO2. A PPY/TiO2/PPY jacket nanotube with high charge storage capacitance is regarded as a promising supercapacitor electrode material.


Sign in / Sign up

Export Citation Format

Share Document