GLOBAL DYNAMICS OF A CHOLERA MODEL WITH TIME DELAY

2013 ◽  
Vol 06 (01) ◽  
pp. 1250070 ◽  
Author(s):  
YUJIE WANG ◽  
JUNJIE WEI

The global dynamics of a cholera model with delay is considered. We determine a basic reproduction number R0 which is chosen based on the relative ODE model, and establish that the global dynamics are determined by the threshold value R0. If R0 < 1, then the infection-free equilibrium is global asymptotically stable, that is, the cholera dies out; If R0 > 1, then the unique endemic equilibrium is global asymptotically stable, which means that the infection persists. The results obtained show that the delay does not lead to periodic oscillations. Finally, some numerical simulations support our theoretical results.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xamxinur Abdurahman ◽  
Ling Zhang ◽  
Zhidong Teng

We derive a discretized heroin epidemic model with delay by applying a nonstandard finite difference scheme. We obtain positivity of the solution and existence of the unique endemic equilibrium. We show that heroin-using free equilibrium is globally asymptotically stable when the basic reproduction numberR0<1, and the heroin-using is permanent when the basic reproduction numberR0>1.


Author(s):  
Haifeng Wang ◽  
Xiaohong Tian

In this paper, a new delayed within host model for dengue fever with immune response and Beddington–DeAngelis incidence is investigated. The basic reproduction number is computed. In addition, a detailed analysis on the local and global dynamics of the model is conducted. Finally, sensitivity analysis is carried out on basic reproduction number and numerical simulations are given to elucidate our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xiangyun Shi ◽  
Guohua Song

This paper formulates and analyzes a pine wilt disease model. Mathematical analyses of the model with regard to invariance of nonnegativity, boundedness of the solutions, existence of nonnegative equilibria, permanence, and global stability are presented. It is proved that the global dynamics are determined by the basic reproduction numberℛ0and the other valueℛcwhich is larger thanℛ0. Ifℛ0andℛcare both less than one, the disease-free equilibrium is asymptotically stable and the pine wilt disease always dies out. If one is between the two values, though the pine wilt disease could occur, the outbreak will stop. If the basic reproduction number is greater than one, a unique endemic equilibrium exists and is globally stable in the interior of the feasible region, and the disease persists at the endemic equilibrium state if it initially exists. Numerical simulations are carried out to illustrate the theoretical results, and some disease control measures are especially presented by these theoretical results.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750067 ◽  
Author(s):  
Ding-Yu Zou ◽  
Shi-Fei Wang ◽  
Xue-Zhi Li

In this paper, the global properties of a mathematical modeling of hepatitis C virus (HCV) with distributed time delays is studied. Lyapunov functionals are constructed to establish the global asymptotic stability of the uninfected and infected steady states. It is shown that if the basic reproduction number [Formula: see text] is less than unity, then the uninfected steady state is globally asymptotically stable. If the basic reproduction number [Formula: see text] is larger than unity, then the infected steady state is globally asymptotically stable.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Stanislas Ouaro ◽  
Ali Traoré

We study a vector-borne disease with age of vaccination. A nonlinear incidence rate including mass action and saturating incidence as special cases is considered. The global dynamics of the equilibria are investigated and we show that if the basic reproduction number is less than 1, then the disease-free equilibrium is globally asymptotically stable; that is, the disease dies out, while if the basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable, which means that the disease persists in the population. Using the basic reproduction number, we derive a vaccination coverage rate that is required for disease control and elimination.


2021 ◽  
Author(s):  
Lan Meng ◽  
Wei Zhu

Abstract In this paper, an n-patch SEIR epidemic model for the coronavirus disease 2019 (COVID-19) is presented. It is shown that there is unique disease-free equilibrium for this model. Then, the dynamic behavior is studied by the basic reproduction number. Some numerical simulations with three patches are given to validate the effectiveness of the theoretical results. The influence of quarantined rate and population migration rate on the basic reproduction number is also discussed by simulation.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Liang Zhang ◽  
Yifan Xing

A reaction-diffusion (R-D) heroin epidemic model with relapse and permanent immunization is formulated. We use the basic reproduction number R0 to determine the global dynamics of the models. For both the ordinary differential equation (ODE) model and the R-D model, it is shown that the drug-free equilibrium is globally asymptotically stable if R0≤1, and if R0>1, the drug-addiction equilibrium is globally asymptotically stable. Some numerical simulations are also carried out to illustrate our analytical results.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Lingling Li ◽  
Jianwei Shen

We focused on the gene regulative network involving Rb-E2F pathway and microRNAs (miR449) and studied the influence of time delay on the dynamical behaviors of Rb-E2F pathway by using Hopf bifurcation theory. It is shown that under certain assumptions the steady state of the delay model is asymptotically stable for all delay values; there is a critical value under another set of conditions; the steady state is stable when the time delay is less than the critical value, while the steady state is changed to be unstable when the time delay is greater than the critical value. Thus, Hopf bifurcation appears at the steady state when the delay passes through the critical value. Numerical simulations were presented to illustrate the theoretical results.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Eric Ávila-Vales ◽  
Erika Rivero-Esquivel ◽  
Gerardo Emilio García-Almeida

We consider a family of periodic SEIRS epidemic models with a fairly general incidence rate of the form Sf(I), and it is shown that the basic reproduction number determines the global dynamics of the models and it is a threshold parameter for persistence of disease. Numerical simulations are performed using a nonlinear incidence rate to estimate the basic reproduction number and illustrate our analytical findings.


Sign in / Sign up

Export Citation Format

Share Document