scholarly journals Development of a hydrogen peroxide-responsive and oxygen-carrying nanoemulsion for photodynamic therapy against hypoxic tumors using phase inversion composition method

Author(s):  
Liang Hong ◽  
Jia Zhang ◽  
Junxian Geng ◽  
Junle Qu ◽  
Liwei Liu

Photodynamic therapy (PDT) has become an attractive tumor treatment modality because of its noninvasive feature and low side effects. However, extreme hypoxia inside solid tumors severely impedes PDT therapeutic outcome. To overcome this obstacle, various strategies have been developed recently. Among them, in situ oxygen generation, which relies on the decomposition of tumor endogenous H2O2, and oxygen delivery tactic using high oxygen loading capacity of hemoglobin or perfluorocarbons, have been widely studied. The in situ oxygen generation strategy has high specificity to tumors, but its oxygen-generating efficiency is limited by the intrinsically low tumor H2O2 level. In contrast, the oxygen delivery approach holds advantage of high oxygen loading efficiency, nevertheless lacks tumor specificity. In this work, we prepared a nanoemulsion system containing H2O2-responsive catalase, highly efficient oxygen carrier perfluoropolyether (PFPE), and a near-infrared (NIR) light activatable photosensitizer IR780, to combine the high tumor specificity of the in situ oxygen generation strategy and the high efficiency of the oxygen delivery strategy. This concisely prepared nanoplatform exhibited enhanced and H2O2-controllable production of singlet oxygen under light excitation, satisfactory cytocompatibility, and ability to kill cancer cells under NIR light excitation. This highlights the potential of this novel nanoplatform for highly efficient and selective NIR light mediated PDT against hypoxic tumors. This research provides new insight into the design of intelligent nanoplatform for relieving tumor hypoxia and enhancing the oxygen-dependent PDT effects in hypoxic tumors.

Author(s):  
Jiaxin Shen ◽  
Dandan Chen ◽  
Ye Liu ◽  
Guoyang Gao ◽  
Zhihe Liu ◽  
...  

Photodynamic therapy (PDT) is a promising method for cancer therapy and also may initiate unexpected damages to normal cells and tissues. Herein, we developed a near-infrared (NIR) light-activatable nanophotosensitizer, which...


2020 ◽  
Vol 11 (9) ◽  
pp. 2494-2503 ◽  
Author(s):  
Zheng Zheng ◽  
Haixiang Liu ◽  
Shaodong Zhai ◽  
Haoke Zhang ◽  
Guogang Shan ◽  
...  

Mitochondria-targeted photosensitizers with highly efficient singlet oxygen generation, bright near-infrared AIE and good two-photon absorption are obtained through ingenious molecular engineering for cancer cell-selective photodynamic therapy.


2016 ◽  
Vol 7 (3) ◽  
pp. 1862-1866 ◽  
Author(s):  
Youyong Yuan ◽  
Chong-Jing Zhang ◽  
Shidang Xu ◽  
Bin Liu

A probe for the in situ monitoring of singlet oxygen generation during targeted theranostic photodynamic therapy is developed based on a photosensitizer with aggregation-induced emission (AIE) characteristics and conjugated to a fluorogenic rhodol dye via a singlet oxygen cleavable linker.


Nanoscale ◽  
2018 ◽  
Vol 10 (48) ◽  
pp. 22937-22945 ◽  
Author(s):  
Xiaoli Cai ◽  
Yanan Luo ◽  
Yang Song ◽  
Dong Liu ◽  
Hongye Yan ◽  
...  

A mitochondria-targeting and O2-evolving PDT nanoplatform based on 3D-dendritic MSNs was proposed for highly efficient cancer PDT treatment.


Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Bing ◽  
Faming Wang ◽  
Yuhuan Sun ◽  
Jinsong Ren ◽  
Xiaogang Qu

An environmentally friendly biomimetic strategy has been presented and validated for the catalytic hydrogenation reaction in live bacteria. In situ formed ultra-fine metal nanoparticles can realize highly efficient asymmetric hydrogenation reactions.


Author(s):  
Zhikai Shi ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jun Huang ◽  
Yanping Hou ◽  
...  

The oxygen evolution reaction (OER) is an important half-reaction in the field of energy production. However, how effectively, simply, and greenly to prepare low-cost OER electrocatalysts remains a problem. Herein,...


2021 ◽  
Author(s):  
Esra Tanrıverdi Eçik ◽  
Onur BULUT ◽  
Hasan Hüseyin Kazan ◽  
Elif Şenkuytu ◽  
Bunyemin Cosut

Photodynamic therapy (PDT) is a promising strategy in cancer treatment with its relatively lower side effect profile. Undoubtedly, the key component of PDT is the photosensitizers with a high ability...


Sign in / Sign up

Export Citation Format

Share Document