The synergistic reaction of Ag deposition and Ce dopant to modify TiO2-based nanomaterials for efficient light photocatalysis

2019 ◽  
Vol 12 (01) ◽  
pp. 1850095 ◽  
Author(s):  
Chenghe Hua ◽  
Xiaoli Dong ◽  
Xiuying Wang ◽  
Xiufang Zhang ◽  
Hongchao Ma

The Ce/TiO2 (Ce/Ti) and Ag/Ce/TiO2 (Ag/Ce/Ti) nanomaterials were successfully synthesized by hydrolysis method. The products were characterized by a variety of characteristic techniques to investigate their phases, morphologies, structures, optical and electronic properties and photocatalytic performance. The DRS, PL and PEC indicated that the introduction of Ce and Ag resulted in a stronger light absorption and an effective charge separation. The photocatalytic performance of both Ce/Ti and Ag/Ce/Ti were evaluated for degrading reactive blue K-NR under simulated sunlight irradiation. The results demonstrated that Ce[Formula: see text] ion doping and Ag deposition synergetic interaction effectively enhance the TiO2 photocatalytic activity ascribed to the improved photogenerated electron–hole pairs separation, enhanced light absorption and large surface area. Considering their good performance, the Ag/Ce/Ti photocatalyst can be applied in organic pollutants treatment in water and environmental purification.

RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 40028-40033 ◽  
Author(s):  
Hao Xu ◽  
Zhixing Gan ◽  
Weiping Zhou ◽  
Zuoming Ding ◽  
Xiaowei Zhang

Insufficient visible light absorption and fast recombination of the photogenerated electron–hole pairs have seriously hampered the photocatalytic performance of graphitic carbon nitride (g-C3N4) up to now.


2020 ◽  
Vol 10 (9) ◽  
pp. 3238
Author(s):  
Min Liu ◽  
Guangxin Wang ◽  
Panpan Xu ◽  
Yanfeng Zhu ◽  
Wuhui Li

In this study, the Ag3PO4/SnO2 heterojunction on carbon cloth (Ag3PO4/SnO2/CC) was successfully fabricated via a facile two-step process. The results showed that the Ag3PO4/SnO2/CC heterojunction exhibited a remarkable photocatalytic performance for the degradation of Rhodamine B (RhB) and methylene blue (MB), under visible light irradiation. The calculated k values for the degradation of RhB and MB over Ag3PO4/SnO2/CC are 0.04716 min−1 and 0.04916 min−1, which are higher than those calculated for the reactions over Ag3PO4/SnO2, Ag3PO4/CC and SnO2/CC, respectively. The enhanced photocatalytic activity could mainly be attributed to the improved separation efficiency of photogenerated electron-hole pairs, after the formation of the Ag3PO4/SnO2/CC heterojunction. Moreover, carbon cloth with a large specific surface area and excellent conductivity was used as the substrate, which helped to increase the contact area of dye solution with photocatalysts and the rapid transfer of photogenerated electrons. Notably, when compared with the powder catalyst, the catalysts supported on carbon cloth are easier to quickly recycle from the pollutant solution, thereby reducing the probability of recontamination.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2206
Author(s):  
Gaoqian Yuan ◽  
Gen Zhang ◽  
Kezhuo Li ◽  
Faliang Li ◽  
Yunbo Cao ◽  
...  

Loading a noble metal on Bi4Ti3O12 could enable the formation of the Schottky barrier at the interface between the former and the latter, which causes electrons to be trapped and inhibits the recombination of photoelectrons and photoholes. In this paper, AgPt/Bi4Ti3O12 composite photocatalysts were prepared using the photoreduction method, and the effects of the type and content of noble metal on the photocatalytic performance of the catalysts were investigated. The photocatalytic degradation of rhodamine B (RhB) showed that the loading of AgPt bimetallic nanoparticles significantly improved the catalytic performance of Bi4Ti3O12. When 0.10 wt% noble metal was loaded, the degradation rate for RhB of Ag0.7Pt0.3/Bi4Ti3O12 was 0.027 min−1, which was respectively about 2, 1.7 and 3.7 times as that of Ag/Bi4Ti3O12, Pt/Bi3Ti4O12 and Bi4Ti3O12. The reasons may be attributed as follows: (i) the utilization of visible light was enhanced due to the surface plasmon resonance effect of Ag and Pt in the visible region; (ii) Ag nanoparticles mainly acted as electron acceptors to restrain the recombination of photogenerated electron-hole pairs under visible light irradiation; and (iii) Pt nanoparticles acted as electron cocatalysts to further suppress the recombination of photogenerated electron-hole pairs. The photocatalytic performance of Ag0.7Pt0.3/Bi4Ti3O12 was superior to that of Ag/Bi4Ti3O12 and Pt/Bi3Ti4O12 owing to the synergistic effect between Ag and Pt nanoparticles.


MRS Advances ◽  
2019 ◽  
Vol 4 (33-34) ◽  
pp. 1887-1893
Author(s):  
Jun Wu ◽  
Yonghui Gong ◽  
Qiang Fu ◽  
Chunxu Pan

ABSTRACTIn this paper, a novel NiFe-LDH@ZnO composite was prepared by using a facile two-step process upon nickel foam (NF) substrate. The morphologies and chemical compositions of the samples were characterized by SEM, EDS, XRD and XPS. Photocatalytic degradation of Rhodamine B dye was tested with the samples NiFe-LDH@ZnO@NF, ZnO@NF and NiFe-LDH under the same conditions. The experimental results revealed that the NiFe-LDH@ZnO@NF composite exhibited excellent photocatalytic performance, i.e., 1.4 and 2.5 times higher than that of pure ZnO and NiFe-LDH, respectively. The reason was that the NiFe-LDH@ZnO@NF composite provided a possibility to effectively inhibit the recombination of the photogenerated electron-hole pairs, and therefore enhanced the photocatalytic efficiency. This composite is expected to have potential applications in wastewater treatment field.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
J. F. Dai ◽  
T. Xian ◽  
L. J. Di ◽  
H. Yang

BiFeO3nanoparticles were prepared via a polyacrylamide gel route. BiFeO3-graphene nanocomposites were fabricated by mixing BiFeO3nanoparticles and graphene into absolute ethanol solution followed by thermal drying. The TEM observation demonstrates that the BiFeO3nanoparticles are well anchored onto graphene sheets. The photocatalytic activities of the as-prepared samples were evaluated by the degradation of methyl orange (MO) under simulated sunlight irradiation. Compared to bare BiFeO3nanoparticles, BiFeO3-graphene nanocomposites exhibit enhanced photocatalytic activity. The outstanding photocatalytic performance is mainly ascribed to the efficient transfer of photogenerated electrons from BiFeO3to graphene, thus leading to an increased availability of h+for the photocatalytic reaction. In addition, hydroxyl (·OH) radicals were detected by the photoluminescence technique using terephthalic acid as a probe molecule and are found to be produced on the irradiated BiFeO3and BiFeO3-graphene nanocomposites; in particular, an enhanced yield is observed for the latter.


2020 ◽  
Author(s):  
Zhaoqing Li ◽  
Zhufeng Liu ◽  
Xiao Yang ◽  
Peng Chen ◽  
Lei Yang ◽  
...  

Abstract According to the composite design, a series of black TiO2/graphene composites were synthesized to improve its photocatalytic activity. TiO2 is generated in situ on the surface of graphene by a facile sol-gel method. The combination of graphene and TiO2 was beneficial for eliminating the opportunity of photogenerated electron-hole recombination due to the excellent conductivity of graphene. In the subsequent hydrogenation process, the self-doping Ti3+ was introduced accompanied by the crystallization of amorphous TiO2. The narrowed bandgap caused by self-doping Ti3+ enhanced the visible light absorption and make the composites appear black. Both of them improved the photocatalytic performance of the synthesized black TiO2/graphene composites. The band structure of the composite was analyzed by valence band XPS, revealing the reason for the high visible light catalytic performance of the composite. The results proved that the black TiO2/graphene composites synthesized show attractive potential for applications in environmental and energy issues.


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 66 ◽  
Author(s):  
Xinxin Zhao ◽  
Hua Yang ◽  
Ziming Cui ◽  
Xiangxian Wang ◽  
Zao Yi

Bi4Ti3O12 square plates were synthesized via a hydrothermal route, and their growth process was systematically investigated. Carbon quantum dots (CQDs) were prepared using glucose as the carbon source, which were then assembled on the surface of Bi4Ti3O12 square plates via a hydrothermal route with the aim of enhancing the photocatalytic performance. XRD (X-ray powder diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), UV-vis DRS (diffuse reflectance spectroscopy), XPS (X-ray photoelectron spectroscopy), FTIR (Fourier transform infrared spectroscopy), PL (photoluminescence) spectroscopy, EIS (electrochemical impedance spectroscopy) and photocurrent spectroscopy were used to systematically characterize the as-prepared samples. It is demonstrated that the decoration of CQDs on Bi4Ti3O12 plates leads to an increased visible light absorption, slightly increased bandgap, increased photocurrent density, decreased charge-transfer resistance, and decreased PL intensity. Simulated sunlight and visible light were separately used as a light source to evaluate the photocatalytic activity of the samples toward the degradation of RhB in aqueous solution. Under both simulated sunlight and visible light irradiation, CQDs@Bi4Ti3O12 composites with an appropriate amount of CQDs exhibit obviously enhanced photocatalytic performance. However, the decoration of excessive CQDs gives rise to a decrease in the photocatalytic activity. The enhanced photocatalytic activity of CQDs-modified Bi4Ti3O12 can be attributed to the following reasons: (1) The electron transfer between Bi4Ti3O12 and CQDs promotes an efficient separation of photogenerated electron/hole pairs in Bi4Ti3O12; (2) the up-conversion photoluminescence emitted from CQDs could induce the generation of additional electron/hole pairs in Bi4Ti3O12; and (3) the photoexcited electrons in CQDs could participate in the photocatalytic reactions.


2018 ◽  
Vol 8 (17) ◽  
pp. 4399-4406 ◽  
Author(s):  
Qi Liu ◽  
Fengjiao Wang ◽  
Huaxiang Lin ◽  
Yanyu Xie ◽  
Na Tong ◽  
...  

Compared to the pristine WO3, the oxygen vacancy defect levels of the sub-stoichiometric WO3−X narrow the bandgap and promote the separation of photogenerated electron–hole pairs.


2020 ◽  
Vol 189 ◽  
pp. 349-356
Author(s):  
Haihua Yang ◽  
Chaohua Dai ◽  
Lingjie Jiang ◽  
Li Zhang ◽  
Jianhui Yan

RSC Advances ◽  
2019 ◽  
Vol 9 (26) ◽  
pp. 15033-15041 ◽  
Author(s):  
Ya Gao ◽  
Yongjie Zheng ◽  
Jixing Chai ◽  
Jingzhi Tian ◽  
Tao Jing ◽  
...  

Effective separation and rapid transfer of photogenerated electron–hole pairs are key features of photocatalytic materials with high catalytic activity, which could be achieved by co-catalysts.


Sign in / Sign up

Export Citation Format

Share Document