scholarly journals Quantitative evaluation of perceived depth of transparently-visualized medical 3D data presented with a multi-view 3D display

Author(s):  
Yuichi Sakano ◽  
Yurina Kitaura ◽  
Kyoko Hasegawa ◽  
Roberto Lopez-Gulliver ◽  
Liang Li ◽  
...  

Transparent visualization is used in many fields because it can visualize not only the frontal object but also other important objects behind it. Although in many situations, it would be very important for the 3D structures of the visualized transparent images to be perceived as they are simulated, little is known quantitatively as to how such transparent 3D structures are perceived. To address this question, in the present study, we conducted a psychophysical experiment in which the observers reported the perceived depth magnitude of a transparent object in medical images, presented with a multi-view 3D display. For the visualization, we employed a stochastic point-based rendering (SPBR) method, which was developed recently as a technique for efficient transparent-rendering. Perceived depth of the transparent object was smaller than the simulated depth. We found, however, that such depth underestimation can be alleviated to some extent by (1) applying luminance gradient inherent in the SPBR method, (2) employing high opacities, and (3) introducing binocular disparity and motion parallax produced by a multi-view 3D display.

2011 ◽  
Vol 464 ◽  
pp. 57-60
Author(s):  
Yong Zhang ◽  
Jun Fang Ni ◽  
Peng Liu

In accordance with the object-oriented programming, a system for 3D medical images of reconstruction and display has been designed and implemented. The overall software structure is established based on VC++6.0 and display technique of Open Graphics Library. The functional modules, such as acquisition of encoded 3D data, pre-process, reconstruction and display, are achieved by the design and implementation of customized classes. At last the software system provides user-friendly graphical user interfaces, highly efficient data processing and reconstruction, and rapid capability of graphic display.


2020 ◽  
Vol 14 (1) ◽  
pp. 133-138
Author(s):  
Yoshihiro Sato ◽  
Shohei Yamaguchi ◽  
Shota Funaki ◽  
Atsutoshi Kurihara ◽  
Yuki Kumagai ◽  
...  

Remotely operated construction machines are used in cases where the operators are in danger, such as on steep slopes or contaminated sites. However, remote operation differs from what operators perceive during hands-on machine operation. Various studies have focused on improving work efficiency by employing remote control operation to reduce operator workload. In these studies, questionnaires were generally employed to evaluate the operator workload. However, the results obtained from the questionnaires varied depending on the physical conditions and the mood of the person on that day. It was therefore concluded that an accurate evaluation cannot be performed based on this method. Hence, in this study, the eye strain of machine operators was measured using an Auto Refractor/Keratometer. In particular, the ciliary muscle activities were measured before and after operating three display systems used for remote control of construction equipment. A quantitative evaluation was then conducted based on the eye strain data. The 2D display system exhibited low work accuracy and efficiency and resulted in significant eye strain. Although the 3D display system that required glasses exhibited high accuracy and efficiency, it resulted in significant eye strain. The 3D display system that did not require glasses demonstrated high accuracy and lower eye strain. From the results presented above, it was confirmed that the autostereoscopic 3D system is suitable for operators.


Author(s):  
Stephen M. Pizer ◽  
Henry Fuchs ◽  
E. Ralph Heinz ◽  
Edward V. Staab ◽  
Edward L. Chaney ◽  
...  

2013 ◽  
Vol 44 (1) ◽  
pp. 81-84 ◽  
Author(s):  
Hidefumi Takamine ◽  
Hiroshi Hasegawa ◽  
Hideaki Okano ◽  
Takahiro Kamikawa ◽  
Shin-ichi Uehara ◽  
...  

2006 ◽  
Vol 46 (17) ◽  
pp. 2636-2644 ◽  
Author(s):  
Mark F. Bradshaw ◽  
Paul B. Hibbard ◽  
Andrew D. Parton ◽  
David Rose ◽  
Keith Langley

2006 ◽  
Vol 17 (8) ◽  
pp. 2088-2096 ◽  
Author(s):  
A J Wilkinson ◽  
E W Randall ◽  
T M Long ◽  
A Collins

2018 ◽  
Author(s):  
Reuben Rideaux ◽  
William J Harrison

ABSTRACTDiscerning objects from their surrounds (i.e., figure-ground segmentation) in a way that guides adaptive behaviours is a fundamental task of the brain. Neurophysiological work has revealed a class of cells in the macaque visual cortex that may be ideally suited to support this neural computation: border-ownership cells (Zhou, Friedman, & von der Heydt, 2000). These orientation-tuned cells appear to respond conditionally to the borders of objects. A behavioural correlate supporting the existence of these cells in humans was demonstrated using two-dimensional luminance defined objects (von der Heydt, Macuda, & Qiu, 2005). However, objects in our natural visual environments are often signalled by complex cues, such as motion and depth order. Thus, for border-ownership systems to effectively support figure-ground segmentation and object depth ordering, they must have access to information from multiple depth cues with strict depth order selectivity. Here we measure in humans (of both sexes) border-ownership-dependent tilt aftereffects after adapting to figures defined by either motion parallax or binocular disparity. We find that both depth cues produce a tilt aftereffect that is selective for figure-ground depth order. Further, we find the effects of adaptation are transferable between cues, suggesting that these systems may combine depth cues to reduce uncertainty (Bülthoff & Mallot, 1988). These results suggest that border-ownership mechanisms have strict depth order selectivity and access to multiple depth cues that are jointly encoded, providing compelling psychophysical support for their role in figure-ground segmentation in natural visual environments.SIGNIFICANCE STATEMENTSegmenting a visual object from its surrounds is a critical function that may be supported by “border-ownership” neural systems that conditionally respond to object borders. Psychophysical work indicates these systems are sensitive to objects defined by luminance contrast. To effectively support figure-ground segmentation, however, neural systems supporting border-ownership must have access to information from multiple depth cues and depth order selectivity. We measured border-ownership-dependent tilt aftereffects to figures defined by either motion parallax or binocular disparity and found aftereffects for both depth cues. These effects were transferable between cues, but selective for figure-ground depth order. Our results suggest that the neural systems supporting figure-ground segmentation have strict depth order selectivity and access to multiple depth cues that are jointly encoded.


2019 ◽  
Author(s):  
Paul Linton

AbstractSince Kepler (1604) and Descartes (1638), ‘vergence’ (the angular rotation of the eyes) has been thought of as one of our most important absolute distance cues. But vergence has never been tested as an absolute distance cue divorced from obvious confounding cues such as binocular disparity. In this article we control for these confounding cues for the first time by gradually manipulating vergence, and find that observers fail to accurately judge distance from vergence. We consider a number of different interpretations of these results, and argue that the most principled response to these results is to question the general effectiveness of vergence as an absolute distance cue. Given other absolute distance cues (such as motion parallax and vertical disparities) are limited in application, this poses a real challenge to our contemporary understanding of visual scale.


Sign in / Sign up

Export Citation Format

Share Document