Synthesis of Magnetic/Graphene Oxide Composite and Application for High-Performance Removal of Polycyclic Aromatic Hydrocarbons from Contaminated Water

Nano LIFE ◽  
2015 ◽  
Vol 05 (03) ◽  
pp. 1542006 ◽  
Author(s):  
Yaping Zhong ◽  
Shan Wang ◽  
Yu He ◽  
Gongwu Song

An effective method for rapid and high efficiency removal of Polycyclic aromatic hydrocarbons from contaminated water had been proposed based on the Graphene/silica magnetic nanocomposites (M/GO). Factors affecting the adsorption efficiency of M/GO were investigated and we found that the optimum adsorption pH was 5.5, adsorption time was 20 min and adsorbent concentration was 400 mg⋅L-1 for phenanthrene and 1200 mg⋅L-1 for pyrene, respectively. The adsorption mechanisms were also discussed. The regeneration and reuse experiments showed good reusability of the as-prepared adsorbent. In addition, this method was successfully applied to the rapid and high efficiency removal of phenanthrene and pyrene from real water samples, which presages more opportunities for application in environment and material sciences.

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 644
Author(s):  
Do-Yeong Kim ◽  
Boram Kim ◽  
Han-Seung Shin

The effect of cellulosic aerogel treatments used for adsorption of four polycyclic aromatic hydrocarbons (PAHs)—benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene [BaP])—generated during the manufacture of sesame oil was evaluated. In this study, eulalia (Miscanthus sinensis var. purpurascens)-based cellulosic aerogel (adsorbent) was prepared and used high performance liquid chromatography with fluorescence detection for determination of PAHs in sesame oil. In addition, changes in the sesame oil quality parameters (acid value, peroxide value, color, and fatty acid composition) following cellulosic aerogel treatment were also evaluated. The four PAHs and their total levels decreased in sesame oil samples roasted under different conditions (p < 0.05) following treatment with cellulosic aerogel. In particular, highly carcinogenic BaP was not detected after treatment with cellulosic aerogel. Moreover, there were no noticeable quality changes in the quality parameters between treated and control samples. It was concluded that eulalia-based cellulosic aerogel proved suitable for the reduction of PAHs from sesame oil and can be used as an eco-friendly adsorbent.


Author(s):  
Marta Oliveira ◽  
Sílvia Capelas ◽  
Cristina Delerue-Matos ◽  
Simone Morais

Grilling activities release large amounts of hazardous pollutants, but information on restaurant grill workers’ exposure to polycyclic aromatic hydrocarbons (PAHs) is almost inexistent. This study assessed the impact of grilling emissions on total workers’ exposure to PAHs by evaluating the concentrations of six urinary biomarkers of exposure (OHPAHs): naphthalene, acenaphthene, fluorene, phenanthrene, pyrene, and benzo(a)pyrene. Individual levels and excretion profiles of urinary OHPAHs were determined during working and nonworking periods. Urinary OHPAHs were quantified by high-performance liquid-chromatography with fluorescence detection. Levels of total OHPAHs (∑OHPAHs) were significantly increased (about nine times; p ≤ 0.001) during working comparatively with nonworking days. Urinary 1-hydroxynaphthalene + 1-hydroxyacenapthene and 2-hydroxyfluorene presented the highest increments (ca. 23- and 6-fold increase, respectively), followed by 1-hydroxyphenanthrene (ca. 2.3 times) and 1-hydroxypyrene (ca. 1.8 times). Additionally, 1-hydroxypyrene levels were higher than the benchmark, 0.5 µmol/mol creatinine, in 5% of exposed workers. Moreover, 3-hydroxybenzo(a)pyrene, biomarker of exposure to carcinogenic PAHs, was detected in 13% of exposed workers. Individual excretion profiles showed a cumulative increase in ∑OHPAHs during consecutive working days. A principal component analysis model partially discriminated workers’ exposure during working and nonworking periods showing the impact of grilling activities. Urinary OHPAHs were increased in grill workers during working days.


Toxics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 65
Author(s):  
Bazoin Sylvain Raoul Bazié ◽  
Caroline Douny ◽  
Thomas Judicaël Ouilly ◽  
Djidjoho Joseph Hounhouigan ◽  
Aly Savadogo ◽  
...  

Charcoal- or wood-cooked chicken is a street-vended food in Burkina Faso. In this study, 15 samples of flamed chicken and 13 samples of braised chicken were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) with a high-performance liquid chromatography-fluorescence detector. A face-to-face survey was conducted to assess the consumption profiles of 300 men and 300 women. The health risk was assessed based on the margin of exposure (MOE) principle. BaP (14.95–1.75 μg/kg) and 4PAHs (BaP + Chr + BaA + BbF) (78.46–15.14 μg/kg) were eight and five times more abundant at the median level in flamed chickens than in braised ones, respectively. The contents of BaP and 4PAHs in all flamed chicken samples were above the limits set by the European Commission against 23% for both in braised chickens. Women had the highest maximum daily consumption of both braised (39.65 g/day) and flamed chickens (105.06 g/day). At the estimated maximum level of consumption, women were respectively 3.64 (flamed chicken) and 1.62 (braised chicken) times more exposed to BaP and 4PAHs than men. MOE values ranged between 8140 and 9591 for men and between 2232 and 2629 for women at the maximum level of consumption of flamed chickens, indicating a slight potential carcinogenic risk.


2020 ◽  
Vol 24 (3) ◽  
pp. 459-465
Author(s):  
O.O. Ijaola ◽  
A.Y. Sangodoyin

Determination and remediation of pollutants such as polycyclic aromatic hydrocarbons (PAHs) have not being fully regulated in Nigeria; hence  contamination of surface water by such pollutant is a major concern. This study was designed to determine the level of selected PAHs in petroleum contaminated water using spectroscopic techniques and the efficacy of activated carbons made from Bambusa vulgaris and Oxytenanthera  vabyssinaca. Bambusa vulgaris and Oxytenanthera abyssinaca were carbonized at 350OC and activated with Phosphoric acid (CBV350OC H3PO4) and Potassium chloride (COA 350OC KCl) as dehydrating agent respectively. The adsorbents were then used to remediate PAHs in petroleum contaminated water. Liquid-Liquid extraction procedures were used for extracting selected PAHs from sampled solutions. The batch experiment was performed to study the adsorption capacity of adsorbents at 5hrs contact time. Analysis of PAHs concentration for each sampling day was determined by GC-MS. Total PAHs in simulated wastewater did not show a clear trend, contrary to the expectation that there should be a progressive increase with time due to photolysis or photodecomposition of compounds or PAHs. COA 350OC KCl showed a range of 6.2-19.3% removal efficiency of each selected PAH with a total percentage efficiency of 27.7-70.8 for all days. For CBV350OC H3PO4 removal efficiency ranged from 10.26-19.30% for each selected PAH and a total efficiency of 50.8-100% for all selected PAHs for the 4 days intervals. The experimental result showed that adsorbent made from Bambusa vulgaris and Oxytenanthera abyssinaca and activated with H3PO4 and KCl as dehydrating agentrespectively can efficiently adsorb the selected PAHs in contaminated water. The study also revealed that PAHs in contaminated water increases with time due to photodecomposition, thus necessitating their treatment on time.


Sign in / Sign up

Export Citation Format

Share Document