Magnetic Mesoporous Silica/Chitosan/Polyproline: A Novel Nanocomposite Toward Sensing of Some Clinically Relevant Biomolecules

Nano LIFE ◽  
2017 ◽  
Vol 07 (03n04) ◽  
pp. 1750006 ◽  
Author(s):  
Mohammad Hasanzadeh ◽  
Soodabeh Hassanpour ◽  
Arezoo Saadati ◽  
Nasrin Shadjou ◽  
Ahad Mokhtarzadeh

In this paper, free-radical polymerization inside magnetic mesoporous silica has been investigated in order to open a route to functional polymer–silica composite nanomaterials with well-defined mesoporosity. Proline monomers integrated with chitosan (CS) were electropolymerized into amino-functionalized magnetic mesoporous silica. The fabrication of polyproline-amino-functionalized magnetic mesoporous silica–CS nanohybrid on glassy carbon electrode (GCE) was performed using one step electrodeposition regime. Field emission scanning electron microscopy (FE-SEM) was confirmed as produced nanohybrid material containing polyproline (PPR) into the pores of magnetic (Fe3O[Formula: see text] mobile crystalline material-41 grafted with 3-aminopropyl groups (MMS) which leads to increase of surface coverage of PPR. The results indicate that PPR was successfully generated inside the pores of the amino-functionalized Mobil Composition of Matter No. 41 (nPrNH2-MCM-41) and that the amine group was capable of protonating the polymer, producing polyproline, the most conductive one, without the addition of another acid source during the polymerization step. Therefore, it was evaluated some electrochemical aspects of the prepared nanohybrid using cyclic voltammetry, differential pulse voltammetry and linear sweep voltammetry. Finally, the electroactivity of polyproline -Fe3O4-nPrNH2-MCM-41-chitosan nanohybrid (PPR-MMS-CS) modified GCE toward detection and determination of some clinically relevant small biomolecules was studied.

1986 ◽  
Vol 51 (10) ◽  
pp. 2083-2090 ◽  
Author(s):  
Jiří Barek ◽  
Roman Hrnčíř

Conditions were found for the determination of chemical carcinogen N,N-dimethyl-4-aminoazobenzene by TAST and differential pulse polarography, fast scan differential pulse voltammetry and linear sweep voltammetry at a hanging mercury drop electrode in a mixed aqueous-methanolic medium. The detection limit of the last two methods, approximately 10-8 mol l-1, can be further lowered by preliminary accumulation of the substance to be determined by adsorption at a working electrode. The applicability of these methods to the analysis of biological materials, directly or combined with an extraction, was demonstrated.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1138
Author(s):  
Jin Zhang ◽  
Dianping Tang

Aptamer- or antibody-based sensing protocols have been reported for detecting carcinoembryonic antigen (CEA), but most exhibit complicated procedures or multiple reactions. In this work, we developed a one-step aptasensing protocol for the spectrometric determination of CEA based on 4-nitrophenol (4-NP)-loaded magnetic mesoporous silica nanohybrids (MMSNs) for bioresponsive controlled-release applications. To fabricate such a responsive–controlled sensing system, single-stranded complementary oligonucleotides relative to the CEA-specific aptamer were first modified on the aminated MMSN. Thereafter, 4-NP molecules blocked the pores with the assistance of the aptamers via a hybridization reaction. The introduced target CEA specifically reacted with the hybridized aptamer, thus detaching from the MMSN to open the gate. The loaded 4-NP molecules were released from the pores, as determined using ultraviolet–visible (UV–vis) absorption spectroscopy after magnetic separation. Under optimum conditions, the absorbance increased with an increase in the target CEA in the sample and exhibited a good linear relationship within the dynamic range of 0.1–100 ng mL−1, with a detection limit of 46 pg mL−1. Moreover, this system also displayed high specificity, good reproducibility, and acceptable accuracy for analyzing human serum specimens, in comparison with a commercialized human CEA-enzyme-linked immunosorbent assay (ELISA) kit.


2019 ◽  
Vol 15 (6) ◽  
pp. 628-634
Author(s):  
Rong Liu ◽  
Jie Li ◽  
Tongsheng Zhong ◽  
Liping Long

Background: The unnatural levels of dopamine (DA) result in serious neurological disorders such as Parkinson’s disease. Electrochemical methods which have the obvious advantages of simple operation and low-cost instrumentation were widely used for determination of DA. In order to improve the measurement performance of the electrochemical sensor, molecular imprinting technique and graphene have always been employed to increase the selectivity and sensitivity. Methods: An electrochemical sensor which has specific selectivity to (DA) was proposed based on the combination of a molecular imprinting polymer (MIP) with a graphene (GR) modified gold electrode. The performance and effect of MIP film were investigated by differential pulse voltammetry (DPV) and cyclic voltammetry (CV) in the solution of 5.0 ×10-3 mol/L K3[Fe(CN)6] and K4[Fe(CN)6] with 0.2 mol/L KCl at room temperature. Results: This fabricated sensor has well repeatability and stability, and was used to determine the dopamine of urine. Under the optimized experiment conditions, the current response of the imprinted sensor was linear to the concentration of dopamine in the range of 1.0×10-7 ~ 1.0×10-5 mol/L, the linear equation was I (µA) = 7.9824+2.7210lgc (mol/L) with the detection limit of 3.3×10-8 mol/L. Conclusion: In this work, a highly efficient sensor for determination of DA was prepared with good sensitivity by GR and great selectivity of high special recognization ability by molecular imprinting membrane. This proposed sensor was used to determine the dopamine in human urine successfully.


1986 ◽  
Vol 51 (11) ◽  
pp. 2466-2472 ◽  
Author(s):  
Jiří Barek ◽  
Antonín Berka ◽  
Ludmila Dempírová ◽  
Jiří Zima

Conditions were found for the determination of 6-mercaptopurine (I) and 6-thioguanine (II) by TAST polarography, differential pulse polarography and fast-scan differential pulse voltammetry at a hanging mercury drop electrode. The detection limits were 10-6, 8 . 10-8, and 6 . 10-8 mol l-1, respectively. A further lowering of the detection limit to 2 . 10-8 mol l-1 was attained by preliminary accumulation of the determined substances at the surface of a hanging mercury drop.


1990 ◽  
Vol 55 (6) ◽  
pp. 1508-1517 ◽  
Author(s):  
Jiří Barek ◽  
Dagmar Civišová ◽  
Ashutosh Ghosh ◽  
Jiří Zima

The polarographic reduction of the title azo dye was studied and optimal conditions were found for its analytical utilization in the concentration range 1 . 10-6 - 1 . 10-7 mol l-1 using differential pulse polarography and 1 . 10-6 - 1 . 10-8 mol l-1 using fast scan differential pulse voltammetry or linear scan voltammetry at a hanging mercury drop electrode. When the latter technique is combined with adsorptive accumulation of the studied substance on the surface of the hanging mercury drop, the determination limit can be further decreased to 3 . 10-9 mol l-1.


1991 ◽  
Vol 56 (7) ◽  
pp. 1434-1445 ◽  
Author(s):  
Jiří Barek ◽  
Ivana Švagrová ◽  
Jiří Zima

Polarographic reduction of the genotoxic N,N’-dinitrosopiperazine was studied and its mechanism was suggested. Optimum conditions were established for the determination of this substance by tast polarography over the concentration region of 1 . 10-3 to 1 . 10-6 mol l-1 and by differential pulse polarography on the conventional dropping mercury electrode or by fast scan differential pulse voltammetry and linear sweep voltammetry on a hanging mercury drop electrode over the concentration region of 1 . 10-3 to 1 . 10-7 mol l-1. Attempts at increasing further the sensitivity via adsorptive accumulation of the analyte on the surface of the hanging mercury drop failed. The methods are applicable to the testing of the chemical efficiency of destruction of the title chemical carcinogen based on its oxidation with potassium permanganate in acid solution.


1991 ◽  
Vol 56 (3) ◽  
pp. 595-601 ◽  
Author(s):  
Jiří Barek ◽  
Gulamustafa Malik ◽  
Jiří Zima

Optimum conditions were found for the determination of 4-nitrobiphenyl by fast scan differential pulse voltammetry at a hanging mercury drop electrode in the concentration range 1 . 10-5 to 2 . 10-7 mol l-1. A further increase in sensitivity was attained by adsorptive accumulation of this substance on the surface of the working electrode, permitting determination in the concentration range (2 – 10) . 10-8 mol l-1 with one minute accumulation of the substance in unstirred solution or (2 – 10) . 10-9 mol l-1 with three-minute accumulation in stirred solution. Linear scan voltammetry can be used to determine 4-nitrobiphenyl in the concentration range (2 – 10) . 10-9 mol l-1 with five-minute accumulation in stirred solution, with the advantage of a smoother baseline and smaller interference from substances that yield only tensametric peaks.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 416
Author(s):  
Zari Tehrani ◽  
Hina Yaqub Abbasi ◽  
Anitha Devadoss ◽  
Jonathan Edward Evans ◽  
Owen James Guy

Electrochemical biosensors using carbon-based electrodes are being widely developed for the detection of a range of different diseases. Since their sensitivity depends on the surface coverage of bioreceptor moieties, it necessarily depends on the surface coverage of amine precursors. Electrochemical techniques, using ferrocene carboxylic acid as a rapid and cheap assay, were used to assess the surface coverage of amino-phenyl groups attached to the carbon electrode. While the number of electrons transferred in the first step of diazotisation indicated a surface coverage of 8.02 ± 0.2 × l0−10 (mol/cm2), and those transferred in the second step, a reduction of nitrophenyl to amino-phenyl, indicated an amine surface coverage of 4–5 × l0−10 (mol/cm2), the number of electrons transferred during attachment of the amine coupling assay compound, ferrocene carboxylic acid, indicated a much lower available amine coverage of only 2.2 × l0−11 (mol/cm2). Furthermore, the available amine coverage was critically dependent upon the number of cyclic voltammetry cycles used in the reduction, and thus the procedures used in this step influenced the sensitivity of any subsequent sensor. Amine coupling of a carboxyl terminated anti-beta amyloid antibody specific to Aβ(1-42) peptide, a potential marker for Alzheimer’s disease, followed the same pattern of coverage as that observed with ferrocene carboxylic acid, and at optimum amine coverage, the sensitivity of the differential pulse voltammetry sensor was in the range 0–200 ng/mL with the slope of 5.07 µA/ng·mL−1 and R2 = 0.98.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yige Guo ◽  
Bin Chen ◽  
Ying Zhao ◽  
Tianxue Yang

AbstractAntibiotics are emerging pollutants and increasingly present in aquaculture and industrial wastewater. Due to their impact on the environment and health, their removal has recently become a significant concern. In this investigation, we synthesized nano zero-valent iron-loaded magnetic mesoporous silica (Fe-MCM-41-A) via precipitation and applied the adsorption of oxytetracycline (OTC) from an aqueous solution. The effects of competing ions such as Na+, Ca2+ and Cu2+ on the adsorption process under different pH conditions were studied in depth to providing a theoretical basis for the application of nanomaterials. The characterization of the obtained material through transmission electron microscopy demonstrates that the adsorbent possesses hexagonal channels, which facilitate mass transfer during adsorption. The loaded zero-valent iron made the magnetic, and was thus separated under an applied magnetic field. The adsorption of OTC onto Fe-MCM-41-A is rapid and obeys the pseudo-second-order kinetic model, and the maximum adsorption capacity of OTC is 625.90 mg g−1. The reaction between OTC and Fe-MCM-41-A was inner complexation and was less affected by the Na+. The effect of Ca2+ on the adsorption was small under acidic and neutral conditions. However, the promotion effect of Ca2+ increased by the increase of pH. Cu2+ decreased the removal efficiencies continuously and the inhibitory effects decrease varied with the increase of pH. We propose that surface complexing, ion-exchange, cationic π-bonding, hydrogen bonding, and hydrophobicity are responsible for the adsorption of OTC onto Fe-MCM-41-A.


2021 ◽  
Author(s):  
Yan Jin ◽  
Tong QI ◽  
Yuqing Ge ◽  
Jin Chen ◽  
Li juan Liang ◽  
...  

In this paper, ultrasensitive electrochemical determination of phosphate in water is achieved by hydrophilic TiO2 modified glassy carbon electrodes for the first time. Differential pulse voltammetry (DPV) method is proposed...


Sign in / Sign up

Export Citation Format

Share Document