Analysis of the Condensate Carryover Phenomenon on Fin and Tube Evaporators

2015 ◽  
Vol 23 (01) ◽  
pp. 1550008 ◽  
Author(s):  
Emilio Navarro-Peris ◽  
Jose Miguel Corberan ◽  
Jose Gonzalvez ◽  
Miguel Zamora

Possible carryover of the condensate from the surface of the evaporator has always been a problem that in practice has been solved by limiting the air velocity. However, the need for more compact solutions and especially for the reduction of the frontal area in many applications requires the increase of the air velocity and therefore new solutions to overcome this problem must be developed. In this contribution, the authors develop an analytical model to estimate the evolution of the condensing drops over the fin surface of a heat exchanger as a function of the fin surface properties and air velocity. This model allows the estimation of the drop size when it starts to move and its trajectory and evolution along the fin. The possibility of drops forming water bridges in between the fins is also analyzed with estimation of the minimum fin separation to avoid its formation depending on the air velocity and the wettability of the fin surface. Finally, the results of an experimental campaign performed with two fin and tube coils of exactly same dimensions and geometry but with different fin materials: one with the standard aluminum fin and the other one with a specially outer hydrophilic layer, are presented, showing that this kind of coating avoids the condensate carryover with no appreciable penalty on the heat transfer performance.

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1065
Author(s):  
Xiuli Liu ◽  
Hua Chen ◽  
Xiaolin Wang ◽  
Gholamreza Kefayati

The condensate on the surface of the minichannel heat exchanger generated during air cooling substantially reduces the heat transfer performance as it works as an evaporator in the air-conditioning system. This has received much attention in scientific communities. In this paper, the effect of operating parameters on the heat transfer performance of a minichannel heat exchanger (MHE) is investigated under an evaporator working condition. An experimental MHE test system is developed for this purpose, and extensive experimental studies are conducted under a wide range of working conditions using the water-cooling method. The inlet air temperature shows a large effect on the overall heat transfer coefficient, while the inlet air relative humidity shows a large effect on the condensate aggregation rate. The airside heat transfer coefficient increases from 66 to 81 W/(m2·K) when the inlet air temperature increases from 30 to 35 °C. While the condensate aggregation rate on the MHE surface increases by up to 1.8 times when the relative humidity increases from 50% to 70%. The optimal air velocity, 2.5 m/s, is identified in terms of the heat transfer rate and airside heat transfer coefficient of the MHE. It is also found that the heat transfer rate and overall heat transfer coefficient increase as the air velocity increases from 1.5 to 2.5 m/s and decreases above 2.5 m/s. Furthermore, a large amount of condensate accumulates on the MHE surface lowering the MHE heat transfer. The inclined installation angle of the MHE in the wind tunnel effectively enhances heat transfer performance on the MHE surface. The experimental results provide useful information for reducing condensate accumulation and enhancing microchannel heat transfer.


Author(s):  
E Y Ng ◽  
P W Johnson ◽  
S Watkins

Heat exchangers used in modern automobiles usually have a highly non-uniform air velocity distribution because of the complexity of the engine compartment and underhood flow fields; hence ineffective use of the core area has been noted. To adequately predict the heat transfer performance in typical car radiators, a generalized analytical model accounting for airflow maldistribution was developed using a finite element approach and applying appropriate heat transfer equations including the ε-NTU (effectiveness - number of heat transfer units) method with the Davenport correlation for the air-side heat transfer coefficient. The analytical results were verified against a set of experimental data from nine radiators tested in a wind tunnel and were found to be within +24 and −10 per cent of the experimental results. By applying the analytical model, several severe non-uniform velocity distributions were also studied. It was found that the loss of radiator performance caused by airflow maldistribution, compared with uniform airflow of the same total flowrate, was relatively minor except under extreme circumstances where the non-uniformity factor was larger than 0.5. The relatively simple set of equations presented in this paper can be used independently in spreadsheets or in conjunction with computational fluid dynamics (CFD) analysis, enabling a full numerical prediction of aerodynamic as well as thermodynamic performance of radiators to be conducted prior to a prototype being built.


2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


Author(s):  
Minghui Hu ◽  
Dongsheng Zhu ◽  
Jialong Shen

It is requested to develop a microscale and high performance heat exchanger for small size energy equipments. The heat transfer performance of the water film on the condensing coils of the microscale evaporative condenser was studied for a single-stage compressed refrigeration cycle system. Under various operation conditions, the effects of the spray density and the head-on air velocity on the heat transfer performance of the water film were investigated. The results show that the microscale heat transfer coefficient of the water film αw increases with the increase of spray density and decreases with the increase of head-on air velocity. The results indicate that the key factor affecting the microscale heat transfer of the water film is the spray density. As the results, it is measured that the present device attained high heat transfer quantity despite the weight is light. In addition, via regression analysis of the experimental data, the correlation equation for calculating the microscale heat transfer coefficient of the water film was obtained, its regression correlation coefficient R is 0.98 and the standard deviation is 7.5%. Finally, the correlations from other works were compared. The results presented that the experimental correlation had better consistency with the correlations from other works. In general, the obtained experimental results of the water film heat transfer are helpful to the design and practical operation of the microscale evaporative condensers.


2012 ◽  
Vol 197 ◽  
pp. 216-220
Author(s):  
Zhong Chao Zhao ◽  
Rui Ye ◽  
Gen Ming Zhou

To solve the cooling problem in modern electronic device, a kind of heat pipe radiator was designed and manufactured in this paper. The heat transfer performance of heat pipe radiator and its relationship with air velocity were investigated by experimental method. The experimental results show that the heat pipe radiator can meet the temperature requirement of electronic device with the power range from 40W to 160W. To keep the operational temperature of electronic device with power of 160W under 75°C,the air velocity should be keep at 1.7m/s. The heat dissipation performance of heat pipe radiator was enhanced with the air velocity increased from 0.2m/s to 1.7m/s.for the electronic equipment with power of 160W.


2021 ◽  
Vol 11 (19) ◽  
pp. 9261
Author(s):  
Yun-Seok Choi ◽  
Youn-Jea Kim

As electrical devices become smaller, it is essential to maintain operating temperature for safety and durability. Therefore, there are efforts to improve heat transfer performance under various conditions, such as using extended surfaces and nanofluids. Among them, cooling methods using ferrofluid are drawing the attention of many researchers. This fluid can control the movement of the fluid in magnetic fields. In this study, the heat transfer performance of a fin-tube heat exchanger, using ferrofluid as a coolant, was analyzed when external magnetic fields were applied. Permanent magnets were placed outside the heat exchanger. When the magnetic fields were applied, a change in the thermal boundary layer was observed. It also formed vortexes, which affected the formation of flow patterns. The vortex causes energy exchanges in the flow field, activating thermal diffusion and improving heat transfer. A numerical analysis was used to observe the cooling performance of heat exchangers, as the strength and number of the external magnetic fields were varying. VGs (vortex generators) were also installed to create vortex fields. A convective heat transfer coefficient was calculated to determine the heat transfer rate. In addition, the comparative analysis was performed with graphical results using contours of temperature and velocity.


Sign in / Sign up

Export Citation Format

Share Document