Performance Enhancement of a Refrigerator Using Phase Change Material-Based Condenser: An Experimental Investigation

2017 ◽  
Vol 25 (04) ◽  
pp. 1750032 ◽  
Author(s):  
Devendra Dandotiya ◽  
N. D. Banker

Tropical countries like India, the ambient temperature reaches to 45–50[Formula: see text]C in the summer and higher ambient temperature directly impacts the energy required by the household refrigerator. This paper presents an experimental performance of a domestic refrigerator incorporated with a phase change material (PCM)-based condenser in parallel to the conventional wire-and-tube air-cooled condenser for the climatic conditions of India. It is proposed to operate the refrigerator with the PCM-based condenser, while the ambient temperature is higher during the day, otherwise with the air-cooled condenser. Due to large latent heat storage capacity of the PCM, the condenser temperature would not increase significantly. The COP of the PCM-based condenser was 28% higher as compared to air cooled condenser for 60[Formula: see text]min which reduce to 3% as PCM temperature reached to 33[Formula: see text]C. The energy consumption is lower by [Formula: see text]% in [Formula: see text][Formula: see text]h of refrigerator experimentation with the proposed modification.

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Pushpendra Kumar Singh Rathore ◽  
Shailendra Kumar Shukla ◽  
Naveen Kumar Gupta

Abstract Various properties of the paraffin have made them compatible to be incorporated in the building materials for improving the latent heat storage capacity of the building envelope. However, the poor thermal conductivity of the paraffin reduces their thermal performance and hence limits their direct application/incorporation in the buildings. In this study, composite mixtures of paraffin and expanded perlite (EP) with an equal weight percent of 49.5 and 47.5, loaded with 1% and 5% of graphene nano-platelets, respectively, were synthesized. The developed samples were characterized uncycled and after 2000 thermal cycles. The results indicate that phase change material (PCM)/expanded perlite/graphene nano-platelets composite shows a significant increment in the thermal conductivity, reduction in the latent heat storage capacity, and a small weight loss. The heat storage/release test depicts that the phase change material/expanded perlite/graphene nano-platelets-5 shows 1.66 and 2.5 times faster heat storage/release rate than phase change material/expanded perlite/graphene nano-platelets-1 and paraffin, respectively. There is no significant change noted after 2000 thermal cycles in phase change material/expanded perlite/graphene nano-platelets-5 and phase change material/expanded perlite/graphene nano-platelets-1 samples, suggesting long-term reliability of the composite PCM. Additionally, thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) testing were also conducted and the results suggest high thermal reliability and good chemical compatibility. These analyses suggest that the phase change material/expanded perlite/graphene nano-platelets composite can become a potential candidate for thermal energy storage.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Guansheng Chen ◽  
Nanshuo Li ◽  
Huanhuan Xiang ◽  
Fan Li

It is well known that attaching fins on the tubes surfaces can enhance the heat transfer into and out from the phase change materials (PCMs). This paper presents the results of an experimental study on the thermal characteristics of finned coil latent heat storage unit (LHSU) using paraffin as the phase change material (PCM). The paraffin LHSU is a rectangular cube consists of continuous horizontal multibended tubes attached vertical fins at the pitches of 2.5, 5.0, and 7.5 mm that creates the heat transfer surface. The shell side along with the space around the tubes and fins is filled with the material RT54 allocated to store energy of water, which flows inside the tubes as heat transfer fluid (HTF). The measurement is carried out under four different water flow rates: 1.01, 1.30, 1.50, and 1.70 L/min in the charging and discharging process, respectively. The temperature of paraffin and water, charging and discharging wattage, and heat transfer coefficient are plotted in relation to the working time and water flow rate.


RSC Advances ◽  
2020 ◽  
Vol 10 (25) ◽  
pp. 14785-14793
Author(s):  
Hossein Tafrishi ◽  
Sadegh Sadeghzadeh ◽  
Fatemeh Molaei ◽  
Hossein Siavoshi

Octadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


Sign in / Sign up

Export Citation Format

Share Document