Performance Analysis of Refrigerants R1234yf, R1234ze and R134a in Ejector-Based Refrigeration Cycle

2018 ◽  
Vol 26 (03) ◽  
pp. 1850026 ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Neeraj

Performance enhancement of refrigeration and heat pump systems by cycle modification is an emerging research topic now-a-days to reduce the electricity consumption leading to mitigate the problems related to the environmental pollution by utility power plants. Due to no moving parts, low cost, simple structure and low maintenance requirements, the use of two-phase ejector has become a promising cycle modification recently. Use of ejector as an expansion device by replacing the throttle valve in the vapor compression refrigeration cycle seems to be one of the efficient ways to reduce the throttling losses or the expansion irreversibility in the refrigeration/heat pump cycle. Ejector also reduces the compressor work by raising the suction pressure to a level higher than that in the evaporator leading to the improvement of COP. The present work aims to evaluate the performance of an ejector based vapor compression refrigeration cycle under a wide range of operating conditions. Two newly proposed refrigerants i.e., R1234yf and R1234ze, and commonly used refrigerant R134a are considered for simulation and a comparative study has been carried out. A numerical model is developed and a parametric study of important parameters such as entrainment ratio, high side pressure (condenser pressure) and evaporator temperature are analyzed for the improvement of COP of the system. Results show that the COP of the R1234ze is highest compared to R1234yf and R134a for the given evaporating and condensing temperature.

2020 ◽  
Vol 15 (3) ◽  
pp. 398-408
Author(s):  
I Ouelhazi ◽  
Y Ezzaalouni ◽  
L Kairouani

Abstract From the last few years, the use of efficient ejector in refrigeration systems has been paid a lot of attention. In this article a description of a refrigeration system that combines a basic vapor compression refrigeration cycle with an ejector cooling cycle is presented. A one-dimensional mathematical model is developed using the flow governing thermodynamic equations based on a constant area ejector flow model. The model includes effects of friction at the constant-area mixing chamber. The current model is based on the NIST-REFPROP database for refrigerant property calculations. The model has basically been used to determine the effect of the ejector geometry and operating conditions on the performance of the whole refrigeration system. The results show that the proposed model predicts ejector performance, entrainment ratio and the coefficient of performance of the system and their sensitivity to evaporating and generating temperature of the cascade refrigeration cycle. The simulated performance has been then compared with the available experimental data from the literature for validation.


2021 ◽  
Vol 31.2 (149) ◽  
pp. 141-146

In this paper, a calculation program is developed to design ejector working in a combined ejector – vapor compression refrigeration cycle. R134a is selected as the refrigerant for the ejector sub-cycle, and R410A is selected for the compressor sub-cycle. The effect of operating conditions and cooling capacity are examined. The results show that the area ratio increases with the increasing of generator temperature and intercooler temperature; and decreases with the increasing of condenser temperature and evaporator temperature. When the generator temperature, condenser temperature, intercooler temperature and evaporator temperature are 80°C, 34°C, 15°C, 0°C respectively, the area ratio is 8.55 and independent with cooling capacity. The design equations of significant dimensions based on operating conditions and cooling capacity are also introduced. The results show that R134a ejetor which is designed for simple ejector cycle is not suitable for combined cycle.


2006 ◽  
Author(s):  
Ali Kilicarslan ◽  
Norbert Mu¨ller

The performance comparison of water as a refrigerant (R718) with some prevailing refrigerants including R717, R290, R134a, R12, R22, and R152a is presented. A computer program simulating an actual vapor compression refrigeration cycle including subcooling was developed to calculate the coefficient of performances (COPs) for the different refrigerants. Evaporator temperatures above which water yields a better COP over the other refrigerants are investigated for subcooling case. The effect of degree of subcooling on the COPs is elaborated. For most of the refrigerants (R290, R134a, R12, R22, and R152a) the COP increases by around one percent (1%) per one Kelvin (1K) subcooling, while the COP for R718 and R717 increases by around 0.2 % and 0.5 % per one Kelvin (1K) subcooling. At constant evaporator temperature, increasing the degree of subcooling results in decrease of the relative COP gain of R718. R718 gives the highest relative COP increase at constant condenser temperature and polytropic efficiency. The effect of polytropic efficiency on the performance is also investigated. It is observed that the evaporator temperature range at which R718 presents a better COP than other refrigerants increases with increasing values of polytropic compressor efficiency if the degree of subcooling is kept constant.


Author(s):  
Ali Kilicarslan ◽  
Norbert Mu¨ller

Irreversibility analyses during compression process are presented for some refrigerants namely, R290, R134a, R12, R22, and R152a in a vapor compression refrigeration cycle. The effects of evaporator temperature, condenser temperature and isentropic efficiency on the irreversibility rates and exergetic efficiencies of the refrigerants under study are investigated By the means of a computer code that simulates a vapor compression cycle including subcooling and superheating. For all the refrigerants in this study, the irreversibility in the compression process decreased as the evaporator temperature and isentropic efficiency increased and it increased with the increasing values of the condenser temperatures. Exergetic efficiency of the compressor increased as the isentropic efficiency of the compressor increased while it decreased with the increasing values of evaporator temperatures. In the case of increasing evaporator and condenser temperatures, and isentropic efficiency values, R22 and R152a approximately show the same and lowest values of compressor irreversibility while R290 has the lowest values. The compressor irreversibilities and compressor exergetic efficiencies of R12 and R134a placed in the moderate range in the case of increasing evaporator and condenser temperatures, and isentropic efficiency values.


2007 ◽  
Vol 259 (2) ◽  
pp. 195-200 ◽  
Author(s):  
S. Figueroa-Gerstenmaier ◽  
M. Francova ◽  
M. Kowalski ◽  
M. Lisal ◽  
I. Nezbeda ◽  
...  

2019 ◽  
Vol 18 (2) ◽  
pp. 19
Author(s):  
L. S. Santana ◽  
J. Castro ◽  
L. M. Pereira

Vapor-compression refrigeration systems require a significant amount of electrical energy. Therefore, there is a need for finding efficient ways of operating this equipment, reducing their energy consumption. The use of heat exchangers between the suction line and the liquid line can produce a better performance of the thermodynamic cycle, as well as reduce it. The present work aims at an experimental analysis of the suction/liquid heat exchanger present in a freezer running with refrigerant fluid R-134a. Three different scenarios were used in order to evaluate the thermal performance of the refrigeration cycle. The first scenario was the conventional freezer set up to collect the required data for further comparison. Moreover, the second and third scenarios were introduced with a 20 cm and 40 cm suction/liquid heat exchanger, respectively, into the system. From the experiments, it was observed that the heat exchange does not significantly affect the coefficient of performance (COP) of the freezer. It was concluded from this work that the best scenario analyzed was the 20 cm suction/liquid heat exchanger where most of the thermodynamic properties were improved, one of them being the isentropic efficiency.


Sign in / Sign up

Export Citation Format

Share Document