scholarly journals THE INFLUENCE OF NON-ESTERIFICATION BIODIESEL IN AN INDIRECT INJECTION DIESEL ENGINE

2012 ◽  
Vol 06 ◽  
pp. 709-714
Author(s):  
SEUNG-HUN CHOI ◽  
YOUNG-TAIG OH

Biodiesel as alternative energy source of the traditional petroleum fuels has increased interest, because environmental pollution based exhaust emissions from vehicle became serious. The advantage of biodiesel produced from esterification of vegetable and animal oils can be used without the modification of existing diesel engine, but glycerin is generated by production process. In this study, the usability of non-esterification biodiesel as an alternative fuel was investigated in an indirect injection diesel engine. The non-esterification biodiesel has not generated glycerin in esterification process and reduced the 20 percent of cost because it has not used methanol in the production process. Experiments were conducted by using the 5, 10 and 20 percentage of biodiesel and 4 and 8 percentage of biodiesel with 1 and 2 percentage of WDP in baseline diesel fuel. The smoke emission of biodiesel was reduced in comparison with diesel fuel, but power, torque and brake specific energy consumption was similar to diesel fuel.

2011 ◽  
Vol 110-116 ◽  
pp. 38-42
Author(s):  
Youngtaig Oh ◽  
Seung Hun Choi ◽  
Azjargal Janchiv

Nowadays, various environmental regulations are being strengthened because of air pollution caused by exhaust gas emission of the automobiles. Biodiesel has been recognized as an alternative energy resource since it can be used without the modification of existing diesel engines and contains oxygen in itself, so the engine performance didn’t have large differences in comparison with the diesel fuel but remarkably reduces smoke emissions. The main objective of this study is to investigate usability of non-esterified biodiesel as an alternative fuel in a common rail direct injection diesel engine. The non-esterified biodiesel has not generated glycerin in esterificaion process and reduced the 20 percent of cost because it has not used methanol in the production process. Experiments were conducted by using the 5 percentage of biodiesel and 4 percentage of biodiesel with 1 percentage of WDP (water dipole power) in diesel fuel. Based on the experimental analysis the smoke emission of biodiesel was reduced significantly, but power, torque, and brake specific energy consumption was similar in comparison with commercial diesel fuel.


2019 ◽  
Vol 23 (Suppl. 5) ◽  
pp. 1779-1788
Author(s):  
Radivoje Pesic ◽  
Aleksnadar Davinic

Rapid growth in the energy consumption has conditioned the need for discovering the alternative energy resources which would be adapted to the existing engine constructions and which would satisfy the additional criteria related to the renewability, ecology, and reliability of use. The experimental research are conducted according to the (European Stationary Cycle - Directive 1999/96/EC) 13-mode. Using biodiesel fuel average thermal efficiency is kept at the level of the application of conventional diesel fuel, average emission of CO is reduced by 13.6%, average emission of NO is increased by x 27.6%, average emission of hydrocarbon is increased by 59.4%, and average particles emission is reduced by 43.2%.


2017 ◽  
Vol 139 ◽  
pp. 110-121 ◽  
Author(s):  
B. Ashok ◽  
R. Thundil Karuppa Raj ◽  
K. Nanthagopal ◽  
Rahul Krishnan ◽  
Rayapati Subbarao

2013 ◽  
Vol 310 ◽  
pp. 129-132
Author(s):  
Jian Tong Song ◽  
Jv Biao Yao ◽  
Chun Hong Zhu

Biodiesel has been gaining worldwide popularity as an alternative energy source because of its many benefits. In order to optimize the application of biodiesel the low-temperature fluidity, pulverization, evaporation, invariability, erosion capability, cleanliness and mutual solubility of the low blending rate soybean-oil-methyl-ester biodiesel-diesel blends were compared and analyzed. Then the engine tests have been carried out with the aim of obtaining comparative measures of emissions such as CO, smoke density, HC and NOx to evaluate and compute the behavior of the diesel engine running on the low blending rate biodiesel-diesel blends. The experimental results show that the low blending rate biodiesel -diesel blends conform to the standard GB252-2000 of China. Compared with the original diesel engine, the smoke, HC and CO emissions of diesel engine fueled with low blending rate soybean-oil-methyl-ester decrease, but NOx emissions increase.


2018 ◽  
Vol 4 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Olena Savchenko ◽  
◽  
Vasyl Zhelykh ◽  
Yurii Yurkevych ◽  
Khrystyna Kozak ◽  
...  

Author(s):  
P. Venkateswara Rao ◽  
S. Ramesh ◽  
S. Anil Kumar

The primary objective of this work is to reduce the particulate matter (PM) or smoke emission and oxides of nitrogen (NOx emissions) the two important harmful emissions and to increase the performance of diesel engine by using oxygenated additives with diesel as blend fuel. Formulation of available diesel fuel with additives is an advantage than considering of engine modification for improvement of higher output. From the available additives, three oxygenates are selected for experimentation by considering many aspects like cost, content of oxygen, flashpoint, solubility, seal etc. The selected oxygenates are Ethyl Aceto Acetate (EAA), Diethyl Carbonate (DEC), Diethylene Glycol (DEG). These oxygenates are blended with diesel fuel in proportions of 2.5%, 5% and 7.5% by volume and experiments were conducted on a single cylinder naturally aspirated direct injection diesel engine. From the results the conclusion are higher brake power and lower BSFC obtained for DEC blends at 7.5% of additive as compared to EAA, DEG and diesel at full load. In case of DEC blends the smoke emission is lower, whereas NOx emissions are very low in case of EAA additive blend fuels. The DEC can be considered is the best oxygenating additive to be blend with diesel in a proportion of 7.5% by volume.


Sign in / Sign up

Export Citation Format

Share Document