The Application of Non-Esterified Biodiesel in a Diesel Engine

2011 ◽  
Vol 110-116 ◽  
pp. 38-42
Author(s):  
Youngtaig Oh ◽  
Seung Hun Choi ◽  
Azjargal Janchiv

Nowadays, various environmental regulations are being strengthened because of air pollution caused by exhaust gas emission of the automobiles. Biodiesel has been recognized as an alternative energy resource since it can be used without the modification of existing diesel engines and contains oxygen in itself, so the engine performance didn’t have large differences in comparison with the diesel fuel but remarkably reduces smoke emissions. The main objective of this study is to investigate usability of non-esterified biodiesel as an alternative fuel in a common rail direct injection diesel engine. The non-esterified biodiesel has not generated glycerin in esterificaion process and reduced the 20 percent of cost because it has not used methanol in the production process. Experiments were conducted by using the 5 percentage of biodiesel and 4 percentage of biodiesel with 1 percentage of WDP (water dipole power) in diesel fuel. Based on the experimental analysis the smoke emission of biodiesel was reduced significantly, but power, torque, and brake specific energy consumption was similar in comparison with commercial diesel fuel.

2012 ◽  
Author(s):  
Md. Nurun Nabi ◽  
Md. Wahid Chowdhury

This research work investigates diesel combustion and exhaust emissions with additives addition to conventional diesel fuel in a four-stroke naturally aspirated direct injection (DI) diesel engine. The additives include DGM, and liquid cerium. The results show that with the addition of DGM to diesel fuel, brake specific energy consumption (BSEC) and all diesel emissions are significantly reduced. The volumetric blending ratios of additives to diesel fuel are 0, 25, 50, 75 and 100%. All emissions including smoke emissions decrease with the increase in oxygen content in the fuel and it is noted that smoke emission completely disappeared at an oxygen content of 36 wt–%. The reason for improvement in BSEC with the addition of additives to base diesel fuel is the improvement of degree of constant volume combustion, and the reduction of the cooling loss. Engine noise and odor concentrations are remarkably reduced with diesel-additive blends. Significant improvement in BSEC and exhaust emissions is not only found at medium load condition but also at high load condition. Key words: Diesel engine, DGM, emissions, BSEC, and cooling loss


2012 ◽  
Vol 06 ◽  
pp. 709-714
Author(s):  
SEUNG-HUN CHOI ◽  
YOUNG-TAIG OH

Biodiesel as alternative energy source of the traditional petroleum fuels has increased interest, because environmental pollution based exhaust emissions from vehicle became serious. The advantage of biodiesel produced from esterification of vegetable and animal oils can be used without the modification of existing diesel engine, but glycerin is generated by production process. In this study, the usability of non-esterification biodiesel as an alternative fuel was investigated in an indirect injection diesel engine. The non-esterification biodiesel has not generated glycerin in esterification process and reduced the 20 percent of cost because it has not used methanol in the production process. Experiments were conducted by using the 5, 10 and 20 percentage of biodiesel and 4 and 8 percentage of biodiesel with 1 and 2 percentage of WDP in baseline diesel fuel. The smoke emission of biodiesel was reduced in comparison with diesel fuel, but power, torque and brake specific energy consumption was similar to diesel fuel.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


Author(s):  
P. Venkateswara Rao ◽  
S. Ramesh ◽  
S. Anil Kumar

The primary objective of this work is to reduce the particulate matter (PM) or smoke emission and oxides of nitrogen (NOx emissions) the two important harmful emissions and to increase the performance of diesel engine by using oxygenated additives with diesel as blend fuel. Formulation of available diesel fuel with additives is an advantage than considering of engine modification for improvement of higher output. From the available additives, three oxygenates are selected for experimentation by considering many aspects like cost, content of oxygen, flashpoint, solubility, seal etc. The selected oxygenates are Ethyl Aceto Acetate (EAA), Diethyl Carbonate (DEC), Diethylene Glycol (DEG). These oxygenates are blended with diesel fuel in proportions of 2.5%, 5% and 7.5% by volume and experiments were conducted on a single cylinder naturally aspirated direct injection diesel engine. From the results the conclusion are higher brake power and lower BSFC obtained for DEC blends at 7.5% of additive as compared to EAA, DEG and diesel at full load. In case of DEC blends the smoke emission is lower, whereas NOx emissions are very low in case of EAA additive blend fuels. The DEC can be considered is the best oxygenating additive to be blend with diesel in a proportion of 7.5% by volume.


2014 ◽  
Vol 984-985 ◽  
pp. 839-844
Author(s):  
Natesan Kanthavelkumaran ◽  
P. Seenikannan

In present scenario researchers focusing the alternate sources of petroleum products. Based on this, current research work focused the emission study of its characteristics and potential as a substitute for Diesel fuel in CI engines. Current research biodiesel is produced by base catalyzed transesterification of rice bran oil is known as Rice Bran Oil Methyl Ester (Biofuel). In this research various proportions of Biofuel and Diesel are prepared on volume basis. It is used as fuels in a four stroke single cylinder direct injection Diesel engine to study the performance and emission characteristics of these fuels. Varieties of results obtained, that shows around 50% reduction in smoke, 33% reduction in HC and 38% reduction in CO emissions. In result discussion a different blends of the brake power and BTE are reduced nearly 2 to 3% and 3 to 4% respectively around 5% increase in the SFC. Therefore it is accomplished from the this experimental work that the blends of Biofuel and Diesel fuel can successfully be used in Diesel engines as an alternative fuel without any modification in the engine. It is also environment friendly blended fuel by the various emission standards.


Transport ◽  
2006 ◽  
Vol 21 (2) ◽  
pp. 71-79 ◽  
Author(s):  
Gvidonas Labeckas ◽  
Arvydas Pauliukas ◽  
Stasys Slavinskas

The purpose of this research is to perform comparative analysis of the effect of fuel additive SO‐2E on the economical and ecological parameters of a direct‐injection Diesel engine, operating on Diesel fuel and shale oil alternately. It was proved that multifunctional fuel additive SO‐2E applied in proportion 0,2 vol % is more effective for improving combustion of shale oil than Diesel fuel. At light operation range the treated shale oil savings based upon fuel energy content throughout wide speed range 1400–2000 min−1 reduce from 14,6–12,3MJ/kWh to 11,6–11,8 MJ/kWh or by 20,5–4,1 %. Maximum NO emission for treated Diesel fuel was reduced by 7,8–11,8 %, whereas NO2 simultaneously increased by 3,8–7,4 %. In the case of treated shale oil both harmful pollutants were reduced by 22,9–28,6 % and by 41,6–13,4 %, respectively. The exhaust gas opacity and CO emissions at the rated performance regime for both fuels were obtained a bit higher, whereas HC emission for treated shale oil increases 1,9 times and for Diesel fuel remains on the same level.


2019 ◽  
Vol 23 (Suppl. 5) ◽  
pp. 1779-1788
Author(s):  
Radivoje Pesic ◽  
Aleksnadar Davinic

Rapid growth in the energy consumption has conditioned the need for discovering the alternative energy resources which would be adapted to the existing engine constructions and which would satisfy the additional criteria related to the renewability, ecology, and reliability of use. The experimental research are conducted according to the (European Stationary Cycle - Directive 1999/96/EC) 13-mode. Using biodiesel fuel average thermal efficiency is kept at the level of the application of conventional diesel fuel, average emission of CO is reduced by 13.6%, average emission of NO is increased by x 27.6%, average emission of hydrocarbon is increased by 59.4%, and average particles emission is reduced by 43.2%.


2018 ◽  
Vol 225 ◽  
pp. 04025
Author(s):  
Mohd. Herzwan Hamzah ◽  
Azri Alias ◽  
Rizalman Mamat ◽  
Abdul Adam Abdullah ◽  
Agung Sudrajad ◽  
...  

Fossil fuel is non-renewable energy. This type of energy sources are widely used in many critical areas such as industrial application and vehicle application. Realizing this fact, many researches are conducted to produce alternative energy sources to reduce the dependence to fossil fuel for energy generation. As for example, fuels that produced from natural sources such as palm, rapeseed and jathropa are commonly used as alternative fuel especially for transportation purpose. Apart from natural sources, waste source such as used tires also can be utilized to produce alternative fuel. In this paper, the engine performance of diesel engine operating with unblended tire derived fuel (TDF) are analyzed and compared to diesel fuel. The experiment is conducted using a single cylinder, direct injection diesel engine. The engine operates at variable engine speed while constant load exerted to the engine. The performance parameters that are analyzed in the experiment includes engine power, engine torque, combustion pressure and exhaust gas temperature. Results from the experiment shows that diesel engine can operate with unblended TDF. However, TDF is not suitable for high engine speed applications. Furthermore, TDF produce lower performance output compared to diesel fuel.


2007 ◽  
Vol 21 (5) ◽  
pp. 2642-2654 ◽  
Author(s):  
Theodoros C. Zannis ◽  
Dimitrios T. Hountalas ◽  
Roussos G. Papagiannakis

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2844-2849 ◽  
Author(s):  
SEUNG-HUN CHOI ◽  
YOUNG-TAIG OH

Potential possibility of the butyl ether (BE, oxygenates of di-ether group) was analyzed as an additives for a naturally aspirated direct injection diesel engine fuel. Engine performance and exhaust emission characteristics were analyzed by applying the commercial diesel fuel and oxygenates additives blended diesel fuels. Smoke emission decreased approximately 26% by applying the blended fuel (diesel fuel 80 vol-% + BE 20vol-%) at the engine speed of 25,000 rpm and with full engine load compared to the diesel fuel. There was none significant difference between the blended fuel and the diesel fuel on the power, torque, and brake specific energy consumption rate of the diesel engine. But, NOx emission from the blended fuel was higher than the commercial diesel fuel. As a counter plan, the EGR method was employed to reduce the NOx . Simultaneous reduction of the smoke and the NOx emission from the diesel engine was achieved by applying the BE blended fuel and the cooled EGR method.


Sign in / Sign up

Export Citation Format

Share Document