scholarly journals EXPECTED GAMMA-RAY EMISSION FROM X-RAY BINARIES

Author(s):  
WŁODEK BEDNAREK

It is at present well known that conditions at some massive binary systems allow acceleration of particles and production of the GeV-TeV γ-rays. However, which particles are responsible for this emission and what radiation processes are engaged is at present not completely clear. We discuss what parameters can determine the acceleration process of particles and high energy radiation produced by them within massive binary systems.

2008 ◽  
Vol 17 (10) ◽  
pp. 1917-1924
Author(s):  
M. CHERNYAKOVA ◽  
A. NERONOV

Gamma-ray-loud binary systems are a newly identified class of X-ray binaries detected up to TeV energies. Three such systems — PSR B1259–63, LS 5039 and LSI +61 303 — have been firmly detected as persistent or regularly variable TeV γ-ray emitters. The origin of the high-energy activity of these sources is not clear. In this paper we review the multiwavelength properties of these systems and discuss their similarities and peculiarities.


2008 ◽  
Vol 17 (10) ◽  
pp. 1849-1858 ◽  
Author(s):  
J. M. PAREDES

The detection of TeV gamma-rays from LS 5039 and the binary pulsar PSR B1259–63 by HESS, and from LS I +61 303 and the stellar-mass black hole Cygnus X-1 by MAGIC, provides clear evidence of very efficient acceleration of particles to multi-TeV energies in X-ray binaries. These observations demonstrate the richness of nonthermal phenomena in compact galactic objects containing relativistic outflows or winds produced near black holes and neutron stars. I review here some of the main observational results on very high energy (VHE) γ-ray emission from X-ray binaries, as well as some of the proposed scenarios to explain the production of VHE γ-rays. I put special emphasis on the flare TeV emission, suggesting that the flaring activity might be a common phenomena in X-ray binaries.


Author(s):  
◽  
ROBERTA ZANIN ◽  
OSCAR BLANCH ◽  
JUAN CORTINA ◽  
TOBIAS JOGLER ◽  
...  

Three X-ray binary systems have been unambiguously detected at TeV energies: LS 5039, LS I +61° +303, PSR B1259-63. Additionally, the TeV source HESS J0632+057 has been found to be a new binary system. The recent detection of the microquasar Cygnus X-3, between 100 MeV and few GeV, confirms that also this sub-class of accreting binaries displaying radio relativistic jets provides interesting candidates for very-high-energy (VHE) gamma-ray observations. The MAGIC telescopes made a significant effort to search for signals from X-ray binaries. This article will present the new results on LS I 61° +303, which show a reduction in the VHE γ-ray flux in the periodic outburst phase with respect to previous campaigns. MAGIC observed also HESS J0632 +057 in 2010 and 2011, covering an X-ray outburst reported by Swift in February 2011. These observations show significant activity in VHE gamma-rays temporally coincident with the X-ray outburst. In addition, this article will review MAGIC results on the microquasars Cygnus X-3, Cygnus X-1, and Scorpius X-1 which report constraining flux upper limits in different X-ray spectral states and as well as during flux enhancements at high energies.


1996 ◽  
Vol 160 ◽  
pp. 315-322 ◽  
Author(s):  
Alice K. Harding

AbstractWith the increased sensitivity of gamma-ray detectors on the Compton Gamma-Ray Observatory (CGRO) the number of presently known gamma-ray pulsars has grown. The new detections are beginning to provide clues to the origin of the high-energy radiation in the form of emerging patterns and correlations among observed quantities such as gamma-ray efficiency and spectral index vs. age. But there are still many questions about the location of the emission and its relation to the radio, optical and X-ray pulses. This paper will review models for gamma-ray emission from pulsars and will examine how well the detailed predictions of these models account for the existing observations.


2008 ◽  
Vol 17 (10) ◽  
pp. 1895-1901 ◽  
Author(s):  
P. BORDAS ◽  
J. M. PAREDES ◽  
V. BOSCH-RAMON

Microquasars (MQs) are X-ray binary systems that display relativistic radio jets. These objects constitute a suitable laboratory for testing high energy astrophysical processes still not well understood, such as those present when jets interact with the interstellar medium (ISM). Focusing on the study of the nonthermal contribution from cocoon and bow-shock regions, we explore, under different ISM densities and ages of the jet source, the possibility to detect MQ jet termination regions. We conclude that emission from these regions may be faint, but still detectable in the radio, X-ray, and gamma-ray bands.


2021 ◽  
Vol 923 (2) ◽  
pp. 241
Author(s):  
C. B. Adams ◽  
W. Benbow ◽  
A. Brill ◽  
J. H. Buckley ◽  
M. Capasso ◽  
...  

Abstract The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the Hα emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 ± 4.4 days is reported, consistent with the period of 317.3 ± 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical Hα parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.


2016 ◽  
Vol 12 (S329) ◽  
pp. 432-432
Author(s):  
Atsuo T. Okazaki

AbstractAbout one half of high-mass X-ray binaries host a Be star [an OB star with a viscous decretion (slowly outflowing) disk]. These Be/X-ray binaries exhibit two types of X-ray outbursts (Stella et al. 1986), normal X-ray outbursts (LX~1036−37 erg s−1) and occasional giant X-ray outbursts (LX > 1037 erg s−1). The origin of giant X-ray outbursts is unknown. On the other hand, a half of gamma-ray binaries have a Be star as the optical counterpart. One of these systems [LS I +61 303 (Porb = 26.5 d)] shows the superorbital (1,667 d) modulation in radio through X-ray bands. No consensus has been obtained for its origin. In this paper, we study a possibility that both phenomena are caused by a long-term, cyclic evolution of a highly misaligned Be disk under the influence of a compact object, by performing 3D hydrodynamic simulations. We find that the Be disk cyclically evolves in mildly eccentric, short-period systems. Each cycle consists of the following stages: 1)As the Be disk grows with time, the initially circular disk becomes eccentric by the Kozai-Lidov mechanism.2)At some point, the disk is tidally torn off near the base and starts precession.3)Due to precession, a gap opens between the disk base and mass ejection region, which allows the formation of a new disk in the stellar equatorial plane (see Figure 1).4)The newly formed disk finally replaces the precessing old disk. Such a cyclic disk evolution has interesting implications for the long-term behavior of high energy emission in Be/X-ray and gamma-ray binaries.


1995 ◽  
Vol 163 ◽  
pp. 271-279
Author(s):  
Lex Kaper

High-mass X-ray binaries (HMXBs) represent an important stage in the evolution of massive binary systems. The compact object (in most cases an X-ray pulsar) not only provides information on the orbital and stellar parameters, but also probes the stellar wind of the massive companion, an OB supergiant or Be star. The X-ray luminosity directly depends on the density and the velocity of the wind at the orbit of the X-ray source. Important constraints on the stellar-wind structure can be set by studying the orbital modulation of UV P-Cygni profiles. In this paper different aspects of the interactive wind-accretion process are highlighted, such as the highly variable X-ray luminosity, the influence of the X-rays on the radiative acceleration of the wind inside the ionization zone, and the large-scale structures that trail the X-ray source in its orbit.


2021 ◽  
Vol 922 (2) ◽  
pp. 111
Author(s):  
Yi Xing ◽  
Zhongxiang Wang

Abstract The microquasar V404 Cygni (also known as GS 2023+338) was previously reported to have weak GeV γ-ray emission in subday time periods during its 2015 outburst. In order to provide more detailed information at the high energy range for this black hole binary system, we conduct analysis on the data obtained with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi). Both the LAT database and source catalog used are the latest versions. In addition to the previously reported detection at the peak of the 2015 outburst, we find a possible detection (∼4σ) of the source during the 3 day time period of 2015 August 17–19 (at the end of the 2015 outburst) and one convincing detection (≃7σ) in 2016 August 23–25. The latter high-significance detection shows that the γ-ray emission of the source is soft with photon index Γ ∼ 2.9. As γ-ray emission from microquasars is considered to be associated with their jet activity, we discuss the results by comparing with those well-studied cases, namely, Cyg X-3 and Cyg X-1. The detection helps identify V404 Cygni as a microquasar with detectable γ-ray emission in its quiescent state, and adds interesting features to the microquasar group, or in a more general context to X-ray binaries with jets.


2003 ◽  
Vol 214 ◽  
pp. 177-180
Author(s):  
B. Rudak ◽  
J. Dyks

Lightcurves and broadband energy spectra of the brightest X/γ-ray sources among the rotation powered pulsars exhibit unexpected richness of features, making each object almost a unique case. This contribution presents how our models of high-energy radiation within the framework of SCLF (space charge limited flow) polar-cap scenarios tackle with some of these challenges.


Sign in / Sign up

Export Citation Format

Share Document