scholarly journals COSMIC STRINGS STABILIZED BY FERMION FLUCTUATIONS

2012 ◽  
Vol 14 ◽  
pp. 215-229
Author(s):  
HERBERT WEIGEL ◽  
MARKUS QUANDT ◽  
NOAH GRAHAM

We provide a thorough exposition of recent results on the quantum stabilization of cosmic strings. Stabilization occurs through the coupling to a heavy fermion doublet in a reduced version of the standard model. The study combines the vacuum polarization energy of fermion zero-point fluctuations and the binding energy of occupied energy levels, which are of the same order in a semi-classical expansion. Populating these bound states assigns a charge to the string. Strings carrying fermion charge become stable if the Higgs and gauge fields are coupled to a fermion that is less than twice as heavy as the top quark. The vacuum remains stable in the model, because neutral strings are not energetically favored. These findings suggest that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model.

2012 ◽  
Vol 27 (15) ◽  
pp. 1260016 ◽  
Author(s):  
HERBERT WEIGEL ◽  
MARKUS QUANDT ◽  
NOAH GRAHAM

We provide a thorough exposition of recent results on the quantum stabilization of cosmic strings. Stabilization occurs through the coupling to a heavy fermion doublet in a reduced version of the standard model. The study combines the vacuum polarization energy of fermion zero-point fluctuations and the binding energy of occupied energy levels, which are of the same order in a semiclassical expansion. Populating these bound states assigns a charge to the string. Strings carrying fermion charge become stable if the Higgs and gauge fields are coupled to a fermion that is less than twice as heavy as the top quark. The vacuum remains stable in the model, because neutral strings are not energetically favored. These findings suggest that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model.


2015 ◽  
Vol 30 (27) ◽  
pp. 1530022 ◽  
Author(s):  
H. Weigel ◽  
M. Quandt ◽  
N. Graham

In the standard model, stabilization of a classically unstable cosmic string may occur through the quantum fluctuations of a heavy fermion doublet. We review numerical results from a semiclassical expansion in a reduced version of the standard model. In this expansion, the leading quantum corrections emerge at one loop level for many internal degrees of freedom. The resulting vacuum polarization energy and the binding energies of occupied fermion energy levels are of the same order, and must therefore be treated on equal footing. Populating these bound states lowers the total energy compared to the same number of free fermions and assigns a charge to the string. Charged strings are already stabilized for a fermion mass only somewhat larger than the top quark mass. Though obtained in a reduced version, these results suggest that neither extraordinarily large fermion masses nor unrealistic couplings are required to bind a cosmic string in the standard model. Furthermore, we also review results for a quantum stabilization mechanism that prevents closed Nielsen–Olesen-type strings from collapsing.


1999 ◽  
Vol 14 (35) ◽  
pp. 2447-2452
Author(s):  
B. B. DEO ◽  
L. P. SINGH

The 12 bosonic degrees of freedom of the standard model (SM) are exactly matched by fermionic degrees of freedom of a single colored quark, e.g. top. Indeed, we construct a charge involving top-quark, gauge and Higgs fields which satisfy usual supersymmetry algebra. The colored quark states behave like the superpartners of gauge and Higgs bosons and vice versa. When this SUSY is broken, a mass relation must be satisfied at the tree level from which the mass of the Higgs is predicted to be 300.5±11 GeV.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Henning Bahl ◽  
Philip Bechtle ◽  
Sven Heinemeyer ◽  
Judith Katzy ◽  
Tobias Klingl ◽  
...  

Abstract The $$ \mathcal{CP} $$ CP structure of the Higgs boson in its coupling to the particles of the Standard Model is amongst the most important Higgs boson properties which have not yet been constrained with high precision. In this study, all relevant inclusive and differential Higgs boson measurements from the ATLAS and CMS experiments are used to constrain the $$ \mathcal{CP} $$ CP -nature of the top-Yukawa interaction. The model dependence of the constraints is studied by successively allowing for new physics contributions to the couplings of the Higgs boson to massive vector bosons, to photons, and to gluons. In the most general case, we find that the current data still permits a significant $$ \mathcal{CP} $$ CP -odd component in the top-Yukawa coupling. Furthermore, we explore the prospects to further constrain the $$ \mathcal{CP} $$ CP properties of this coupling with future LHC data by determining tH production rates independently from possible accompanying variations of the $$ t\overline{t}H $$ t t ¯ H rate. This is achieved via a careful selection of discriminating observables. At the HL-LHC, we find that evidence for tH production at the Standard Model rate can be achieved in the Higgs to diphoton decay channel alone.


2019 ◽  
Vol 64 (8) ◽  
pp. 714
Author(s):  
T. V. Obikhod ◽  
I. A. Petrenko

The problems of the Standard Model, as well as questions related to Higgs boson properties led to the need to model the ttH associated production and the Higgs boson decay to a top quark pair within the MSSM model. With the help of computer programs MadGraph, Pythia, and Delphes and using the latest kinematic cuts taken from experimental data obtained at the LHC, we have predicted the masses of MSSM Higgs bosons, A and H.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Vincenzo Afferrante ◽  
Axel Maas ◽  
René Sondenheimer ◽  
Pascal Törek

Strict gauge invariance requires that physical left-handed leptons are actually bound states of the elementary left-handed lepton doublet and the Higgs field within the standard model. That they nonetheless behave almost like pure elementary particles is explained by the Fr"ohlich-Morchio-Strocchi mechanism. Using lattice gauge theory, we test and confirm this mechanism for fermions. Though, due to the current inaccessibility of non-Abelian gauged Weyl fermions on the lattice, a model which contains vectorial leptons but which obeys all other relevant symmetries has been simulated.


Author(s):  
Maarten Boonekamp ◽  
Matthias Schott

With the huge success of quantum electrodynamics (QED) to describe electromagnetic interactions in nature, several attempts have been made to extend the concept of gauge theories to the other known fundamental interactions. It was realized in the late 1960s that electromagnetic and weak interactions can be described by a single unified gauge theory. In addition to the photon, the single mediator of the electromagnetic interaction, this theory predicted new, heavy particles responsible for the weak interaction, namely the W and the Z bosons. A scalar field, the Higgs field, was introduced to generate their mass. The discovery of the mediators of the weak interaction in 1983, at the European Center for Nuclear Research (CERN), marked a breakthrough in fundamental physics and opened the door to more precise tests of the Standard Model. Subsequent measurements of the weak boson properties allowed the mass of the top quark and of the Higgs Boson to be predicted before their discovery. Nowadays, these measurements are used to further probe the consistency of the Standard Model, and to place constrains on theories attempting to answer still open questions in physics, such as the presence of dark matter in the universe or unification of the electroweak and strong interactions with gravity.


2019 ◽  
Vol 201 ◽  
pp. 04003 ◽  
Author(s):  
Oksana A. Koval ◽  
Igor R. Boyko ◽  
Nazim Huseynov

Higgs boson production in association with a single top quark is the only process sensitive to the sign of the Top Yukawa coupling. We present a Monte-Carlo study of the pp → tHqb process and discuss the esperimental signatures that can help to discover it at the LHC. Two scenarios have been considered, the Standard Model case and the Inverted Top Coupling scenario.


2003 ◽  
Vol 18 (supp01) ◽  
pp. 1-26
Author(s):  
Richard Kenway

In the Standard Model, quarks and gluons are permanently confined by the strong interaction into hadronic bound states. The values of the quark masses and the strengths of the decays of one quark flavour into another cannot be measured directly, but must be deduced from experiments on hadrons. This requires calculations of the strong-interaction effects within the bound states, which are only possible using numerical simulations of lattice QCD. These are computationally intensive and, for the past twenty years, have exploited leading-edge computing technology. In conjunction with experimental data from B Factories, over the next few years, lattice QCD may provide clues to physics beyond the Standard Model. These lectures provide a non-technical introduction to lattice QCD, some of the recent results, QCD computers, and the future prospects.


Sign in / Sign up

Export Citation Format

Share Document