Nonlinear Properties of "Magnetic Light"

2015 ◽  
Vol 04 (01) ◽  
pp. 57-58 ◽  
Author(s):  
M. R. Shcherbakov ◽  
D. N. Neshev ◽  
B. Hopkins ◽  
A. S. Shorokhov ◽  
I. Staude ◽  
...  

Control of light at the nanoscale is demanding for future successful on-chip integration. At the subwavelength scale, the conventional optical elements such as lenses become not functional, and they require conceptually new approach for a design of nanoscale photonic devices. The most common approach to the subwavelength photonics is based on plasmonic nanoparticles and plasmonic waveguides due to their ability to capture and concentrate visible light at subwavelength dimensions. But the main drawback of all plasmonic devices is their intrinsic losses due to metallic components which affect strongly the overall performance of plasmonic structures limiting their scalability and practical use.

PhotoniX ◽  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Chenlei Li ◽  
Ming Zhang ◽  
Hongnan Xu ◽  
Ying Tan ◽  
Yaocheng Shi ◽  
...  

AbstractOn-chip mode-manipulation is one of the most important physical fundamentals for many photonic integrated devices and circuits. In the past years, great progresses have been achieved on subwavelength silicon photonics for on-chip mode-manipulation by introducing special subwavelength photonic waveguides. Among them, there are two popular waveguide structures available. One is silicon hybrid plasmonic waveguides (HPWGs) and the other one is silicon subwavelength-structured waveguides (SSWGs). In this paper, we focus on subwavelength silicon photonic devices and the applications with the manipulation of the effective indices, the modal field profiles, the mode dispersion, as well as the birefringence. First, a review is given about subwavelength silicon photonics for the fundamental-mode manipulation, including high-performance polarization-handling devices, efficient mode converters for chip-fiber edge-coupling, and ultra-broadband power splitters. Second, a review is given about subwavelength silicon photonics for the higher-order-mode manipulation, including multimode converters, multimode waveguide bends, and multimode waveguide crossing. Finally, some emerging applications of subwavelength silicon photonics for on-chip mode-manipulation are discussed.


2021 ◽  
Author(s):  
Han Ye ◽  
Yanrong Wang ◽  
Shuhe Zhang ◽  
Danshi Wang ◽  
Yumin Liu ◽  
...  

Precise manipulation of mode order in silicon waveguide plays a fundamental role in the on-chip all-optical interconnections and is still a tough task in design when the functional region is...


2010 ◽  
Vol 438 ◽  
pp. 65-72 ◽  
Author(s):  
Andreas Mehner ◽  
Ju An Dong ◽  
Timo Hoja ◽  
Torsten Prenzel ◽  
Yildirim Mutlugünes ◽  
...  

The demand for high precision optical elements as micro lens arrays for displays increases continually. Economic mass production of such optical elements is done by replication with high precision optical molds. A new approach for manufacturing such molds was realized by diamond machinable and wear resistant sol-gel coatings. Crack free silica based hybrid coatings from base catalyzed sols from tetraethylorthosilicate (TEOS: Si(OC2H5)4) and methyltriethoxysilane (MTES: Si(CH3)(OC2H5)3) precursors were deposited onto pre-machined steel molds by spin coating process followed by a heat treatment at temperatures up to 800°C. Crack-free multilayer coatings with a total thickness of up to 18 µm were achieved. Micro-machining of these coatings was accomplished by high precision fly cutting with diamond tools. Molds with micro-structured coatings were successfully tested for injection molding of PMMA optical components. The wear resistance of the coatings was successfully tested by injection molding of 1000 PMMA lenses. Hardness and elastic modulus of the coatings were measured by nano indentation. The chemical composition was measured by X-ray photo electron spectroscopy (XPS) as a function of the sol-gel processing parameters.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 599
Author(s):  
Jerry R. Meyer ◽  
Chul Soo Kim ◽  
Mijin Kim ◽  
Chadwick L. Canedy ◽  
Charles D. Merritt ◽  
...  

We describe how a midwave infrared photonic integrated circuit (PIC) that combines lasers, detectors, passive waveguides, and other optical elements may be constructed on the native GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact architectures are described, some of which incorporate both the sensing waveguide and detector into a laser cavity defined by two high-reflectivity cleaved facets. We also describe an edge-emitting laser configuration that optimizes stability by minimizing parasitic feedback from external optical elements, and which can potentially operate with lower drive power than any mid-IR laser now available. While ICL-based PICs processed on GaSb serve to illustrate the various configurations, many of the proposed concepts apply equally to quantum-cascade-laser (QCL)-based PICs processed on InP, and PICs that integrate III-V lasers and detectors on silicon. With mature processing, it should become possible to mass-produce hundreds of individual PICs on the same chip which, when singulated, will realize chemical sensing by an extremely compact and inexpensive package.


2019 ◽  
Vol 10 (6) ◽  
pp. 1687-1691 ◽  
Author(s):  
Mrinmoy Das ◽  
Minh Duy Vu ◽  
Qi Zhang ◽  
Xue-Wei Liu

Phosphonium ylides have shown their synthetic usefulness in important carbon–carbon bond formation processes. Our new strategy employs phosphonium ylides as novel carbyne equivalents and features a new approach for constructing carbon–carbon bonds from alkenes.


2017 ◽  
Vol 10 (11) ◽  
pp. 1473-1484 ◽  
Author(s):  
Xianming Kong ◽  
Erwen Li ◽  
Kenny Squire ◽  
Ye Liu ◽  
Bo Wu ◽  
...  

Author(s):  
Guiliang Liu ◽  
Oliver Schulte

A variety of machine learning models have been proposed to assess the performance of players in professional sports. However, they have only a limited ability to model how player performance depends on the game context. This paper proposes a new approach to capturing game context: we apply Deep Reinforcement Learning (DRL) to learn an action-value Q function from 3M play-by-play events in the National Hockey League (NHL). The neural network representation integrates both continuous context signals and game history, using a possession-based LSTM. The learned Q-function is used to value players' actions under different game contexts. To assess a player's overall performance, we introduce a novel Game Impact Metric (GIM) that aggregates the values of the player's actions. Empirical Evaluation shows GIM is consistent throughout a play season, and correlates highly with standard success measures and future salary.


Nanophotonics ◽  
2017 ◽  
Vol 6 (5) ◽  
pp. 1121-1131 ◽  
Author(s):  
Hao Wu ◽  
Ke Ma ◽  
Yaocheng Shi ◽  
Lech Wosinski ◽  
Daoxin Dai

AbstractWe propose and demonstrate an ultracompact on-chip photothermal power monitor based on a silicon hybrid plasmonic waveguide (HPWG), which consists of a metal strip, a silicon core, and a silicon oxide (SiO2) insulator layer between them. When light injected to an HPWG is absorbed by the metal strip, the temperature increases and the resistance of the metal strip changes accordingly due to the photothermal and thermal resistance effects of the metal. Therefore, the optical power variation can be monitored by measuring the resistance of the metal strip on the HPWG. To obtain the electrical signal for the resistance measurement conveniently, a Wheatstone bridge circuit is monolithically integrated with the HPWG on the same chip. As the HPWG has nanoscale light confinement, the present power monitor is as short as ~3 μm, which is the smallest photothermal power monitor reported until now. The compactness helps to improve the thermal efficiency and the response speed. For the present power monitor fabricated with simple fabrication processes, the measured responsivity is as high as about 17.7 mV/mW at a bias voltage of 2 V and the power dynamic range is as large as 35 dB.


1996 ◽  
Vol 427 ◽  
Author(s):  
Jeffrey A. Davis ◽  
John C. Eble ◽  
Vivek K. De ◽  
James D. Meindl

AbstractBased on Rent's Rule, a well established empirical relationship, a rigorous derivation of a complete wire length distribution for on-chip random logic networks is performed. The distribution is then used to describe an optimal architecture for a multilevel wiring network that provides maximum interconnect density and minimum chip size for a ULSI system. In addition, this new distribution has been incorporated into a Generic System Simulator (GENESYS), that projects overall performance of future ULSI systems. Assuming various interconnect materials such as copper, aluminum, silicon dioxide, and low dielectric polymers, GENESYS has been used to examine the effects that each material has on overall performance of ASIC's over the next 15 years.


Sign in / Sign up

Export Citation Format

Share Document