Metal–Organic Framework for Selective Gas Scavenging

2016 ◽  
Vol 04 (04) ◽  
pp. 1640014
Author(s):  
Jiating He ◽  
Xu Li

Selective gas adsorption plays an important role in adsorptive separation of gases and scavenging unfavorable or hazardous gases. The use of cost-effective and environmentally friendly materials for selective gas adsorption has become one of the most pressing needs today. The development of new adsorbents is essential but difficult due to the selectivity and efficiency requirements for practical application. As potential scavengers, metal–organic frameworks (MOFs) have drawn great attention. In this review, the current progress of science and technology development of MOFs on selective gas scavenging will be highlighted. Future perspectives for exploring MOFs for practical application will also be put forward.

2013 ◽  
Vol 795 ◽  
pp. 96-101 ◽  
Author(s):  
Hoong Chan Wai ◽  
Mohd Noor Mazlee ◽  
Zainal Arifin Ahmad ◽  
Shamsul Baharin Jamaludin ◽  
Mohd Azlan Mohd Ishak ◽  
...  

Many new sustainable porous materials were developed for gas adsorption applications. Common materials such as activated carbon, clay materials and metal organic framework (MOF) that utilized as potential porous adsorption materials were studied. The article was also discussed on the fabrication methods of porous materials. Adsorptions of flue gas using porous materials were reviewed. It was found that the adsorption properties of porous materials were highly dependent on surface area, selectivity and impregnation. Low cost porous adsorbents such as clay and fly ash were also reviewed as potential and cost effective materials to be used in industries.


Author(s):  
Davood Taherinia ◽  
Seyyed Heydar Moravvej ◽  
Mohammad Moazzeni ◽  
Elham Akbarzadeh

The development of efficient and cost-effective catalysts for the oxygen evolution reaction is highly desirable for applications that are based on sustainable and clean technologies. In this study, we report...


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 137
Author(s):  
Chun-Yan Shih ◽  
Pei-Ting Wang ◽  
Wu-Chou Su ◽  
Hsisheng Teng ◽  
Wei-Lun Huang

Since the first clinical cancer treatment in 1978, photodynamic therapy (PDT) technologies have been largely improved and approved for clinical usage in various cancers. Due to the oxygen-dependent nature, the application of PDT is still limited by hypoxia in tumor tissues. Thus, the development of effective strategies for manipulating hypoxia and improving the effectiveness of PDT is one of the most important area in PDT field. Recently, emerging nanotechnology has benefitted progress in many areas, including PDT. In this review, after briefly introducing the mechanisms of PDT and hypoxia, as well as basic knowledge about nanomedicines, we will discuss the state of the art of nanomedicine-based approaches for assisting PDT for treating hypoxic tumors, mainly based on oxygen replenishing strategies and the oxygen dependency diminishing strategies. Among these strategies, we will emphasize emerging trends about the use of nanoscale metal–organic framework (nMOF) materials and the combination of PDT with immunotherapy. We further discuss future perspectives and challenges associated with these trends in both the aspects of mechanism and clinical translation.


2012 ◽  
Vol 51 (9) ◽  
pp. 4947-4953 ◽  
Author(s):  
Zhangjing Zhang ◽  
Shengchang Xiang ◽  
Kunlun Hong ◽  
Madhab, C. Das ◽  
Hadi D. Arman ◽  
...  

CrystEngComm ◽  
2013 ◽  
Vol 15 (45) ◽  
pp. 9688 ◽  
Author(s):  
Yangyang Liu ◽  
Ying-Pin Chen ◽  
Tian-Fu Liu ◽  
Andrey A. Yakovenko ◽  
Aaron M. Raiff ◽  
...  

2016 ◽  
Vol 52 (14) ◽  
pp. 3003-3006 ◽  
Author(s):  
Linyi Bai ◽  
Binbin Tu ◽  
Yi Qi ◽  
Qiang Gao ◽  
Dong Liu ◽  
...  

Incorporating supramolecular recognition units, crown ether rings, into metal–organic frameworks enables the docking of metal ions through complexation for enhanced performance.


2017 ◽  
Vol 24 (4) ◽  
pp. 865-871 ◽  
Author(s):  
Yong-Zhi Li ◽  
Hai-Hua Wang ◽  
Hong-Yun Yang ◽  
Lei Hou ◽  
Yao-Yu Wang ◽  
...  

2021 ◽  
Author(s):  
Sujing Wang ◽  
Antoine Tissot ◽  
Guillaume Maurin ◽  
Tatjana Parac-Vogt ◽  
Christian Serre ◽  
...  

<div>The discovery of nanozymes for selective cleavage of proteins would boost the emerging areas of modern proteomics, however, the development of efficient and reusable artificial catalysts for peptide bond hydrolysis is challenging. Here we report the detailed catalytic properties of a microporous zirconium carboxylate metal-organic framework, MIP-201, in promoting peptide bond hydrolysis in a simple dipeptide, as well as in horse-heart myoglobin (Mb) protein that consists of 153 amino acids. We demonstrate that MIP-201 features an excellent catalytic activity and selectivity, a good tolerance toward reaction conditions covering a wide range of different pH values, and importantly, an exceptional recycling ability associated with easy regeneration process. Taking into account the excellent catalytic performance of MIP-201 and its other advantages such as 6-connected Zr6 cluster active sites, the green, scalable and cost-effective synthesis, and an outstanding chemical and architectural stability, our finding suggests that MIP-201 may be a promising and practical alternative to the current commercially available catalysts for peptide bond hydrolysis.</div>


2021 ◽  
Author(s):  
Sujing Wang ◽  
Antoine Tissot ◽  
Guillaume Maurin ◽  
Tatjana Parac-Vogt ◽  
Christian Serre ◽  
...  

<div>The discovery of nanozymes for selective cleavage of proteins would boost the emerging areas of modern proteomics, however, the development of efficient and reusable artificial catalysts for peptide bond hydrolysis is challenging. Here we report the detailed catalytic properties of a microporous zirconium carboxylate metal-organic framework, MIP-201, in promoting peptide bond hydrolysis in a simple dipeptide, as well as in horse-heart myoglobin (Mb) protein that consists of 153 amino acids. We demonstrate that MIP-201 features an excellent catalytic activity and selectivity, a good tolerance toward reaction conditions covering a wide range of different pH values, and importantly, an exceptional recycling ability associated with easy regeneration process. Taking into account the excellent catalytic performance of MIP-201 and its other advantages such as 6-connected Zr6 cluster active sites, the green, scalable and cost-effective synthesis, and an outstanding chemical and architectural stability, our finding suggests that MIP-201 may be a promising and practical alternative to the current commercially available catalysts for peptide bond hydrolysis.</div>


Sign in / Sign up

Export Citation Format

Share Document