Superlattice Structure a-Si Films Fabricated by the Photo-CVD Method and their Application to Solar Cells

1987 ◽  
Vol 26 (Part 1, No. 1) ◽  
pp. 28-32 ◽  
Author(s):  
Shinya Tsuda ◽  
Hisaki Tarui ◽  
Takao Matsuyama ◽  
Tsuyoshi Takahama ◽  
Shoichirou Nakayama ◽  
...  
1986 ◽  
Vol 70 ◽  
Author(s):  
Shoichi Nakano ◽  
Shinya Tsuda ◽  
Hisaki Tarui ◽  
Tsuyoshi Takahama ◽  
Hisao Haku ◽  
...  

ABSTRACTAs a new preparation method for high-quality a-Si films, we have developed the super chamber, a separated UHV reaction chamber system. A low impurity concentration and excellent film properties were obtained by the super chamber. A conversion efficiency of 11.7% was obtained for an a-Si solar cell using a high-quality i-layer deposited by the super chamber, and a p-layer fabricated by a photo-CVD method.As a new material, amorphous superlattice structure films were fabricated by the photo-CVD method for the first time. Quantization effects and low damage to the interfaces were observed. Superlattice structure p-layer a-Si solar cells were fabricated for the first time, and a conversion efficiency of 10.5% was obtained.


1986 ◽  
Author(s):  
H. Tarui ◽  
T. Matsuyama ◽  
S. Tsuda ◽  
Y. Hishikawa ◽  
T. Takahama ◽  
...  

1987 ◽  
Vol 95 ◽  
Author(s):  
Shinya Tsuda ◽  
Hisao Haku ◽  
Hisaki Tarui ◽  
Takao Matsuyama ◽  
Katsunobu Sayama ◽  
...  

AbstractIn order to improve the conversion efficiency of a-Si solar cells, high-quality a-Si based alloys of both narrow handgap and wide bandgap were studied.Concerning the narrow bandgap material, we found a particular dependence of film qualities on substrate temperature. In addition, high-quality a-SiGe:H films were obtained by using a super chamber (separated ultra-high vacuum reaction chamber).As for the high-quality wide bandgap material, a-Si/a-SiC superlattice structure films fabricated by a photo-CVD method were studied for the first time. From the analysis of their properties, we found that the superlattice structure p-layer was an active layer for photovoltaic effect. A conversion efficiency of 11.2% has been obtained for a pin a-Si solar cell whose player was of the superlattice structure.


2001 ◽  
Vol 69 (2) ◽  
pp. 107-114 ◽  
Author(s):  
K Niira ◽  
H Hakuma ◽  
M Komoda ◽  
K Fukui ◽  
K Shirasawa
Keyword(s):  

2017 ◽  
Vol 56 (47) ◽  
pp. 15078-15082 ◽  
Author(s):  
Xiao Yang ◽  
Li Ji ◽  
Xingli Zou ◽  
Taeho Lim ◽  
Ji Zhao ◽  
...  

Author(s):  
H. T. Nguyen ◽  
L. Li ◽  
F. Kremer ◽  
A. Cuevas ◽  
D. Macdonald ◽  
...  
Keyword(s):  

1987 ◽  
Author(s):  
Y. Kuwano ◽  
S. Tsuda ◽  
N. Nakamura ◽  
M. Nishikuni ◽  
K. Yoshida ◽  
...  
Keyword(s):  

2001 ◽  
Vol 664 ◽  
Author(s):  
Shingo Okamoto ◽  
Akira Terakawa ◽  
Eiji Maruyama ◽  
Wataru Shinohara ◽  
Makoto Tanaka ◽  
...  

ABSTRACTThis paper reviews recent progress in large-area a-Si/a-SiGe tandem solar cells in Sanyo. Much effort has been devoted to increasing both the stabilized efficiency and the process throughput. A key issue in increasing the stabilized efficiency is thinner i-layer structure with an improved optical confinement effect. High-rate deposition of the i-layers has been investigated using rf (13.56MHz) plasma-CVD method while keeping the substrate temperature below 200 °C. A high photosensitivity of 106 of a-Si:H films maintain up to the deposition rate (Rd) of 15 Å/s by optimizing hydrogen dilution and other deposition conditions. It is of great importance to utilize the effect of hydrogen dilution which can reduce the incorporation of excess hydrogen in the films. The world's highest conversion efficiency of 11.2% has been achieved for a large-area (8252cm2) a-Si/a-SiGe tandem by combining the optimized hydrogen dilution and other solar cell related technologies.


2006 ◽  
Vol 90 (18-19) ◽  
pp. 3416-3421 ◽  
Author(s):  
Y. Fujioka ◽  
A. Shimizu ◽  
H. Fukuda ◽  
T. Oouchida ◽  
S. Tachibana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document