Suppression of Stand-by Tunnel Current in Ultra-Thin Gate Oxide MOSFETs by Dual Oxide Thickness-Multiple Threshold Voltage CMOS (DOT-MTCMOS)

2000 ◽  
Vol 39 (Part 1, No. 4B) ◽  
pp. 2287-2290 ◽  
Author(s):  
Takashi Inukai ◽  
Toshiro Hiramoto
2007 ◽  
Vol 28 (3) ◽  
pp. 217-219 ◽  
Author(s):  
Meishoku Masahara ◽  
Radu Surdeanu ◽  
Liesbeth Witters ◽  
Gerben Doornbos ◽  
Viet H. Nguyen ◽  
...  

2013 ◽  
Vol 772 ◽  
pp. 422-426
Author(s):  
Zhi Chao Zhao ◽  
Tie Feng Wu ◽  
Hui Bin Ma ◽  
Quan Wang ◽  
Jing Li

With the scaling of MOS devices, gate tunneling current increases significantly due to thinner gate oxides, and static characteristics of devices and circuit are severely affected by the presence of gate tunneling currents. In this paper, a novel theory gate tunneling current predicting model using integral approach is presented in ultra-thin gate oxide MOS devices that tunneling current changes with gate-oxide thickness. To analyze quantitatively the behaviors of scaled MOS devices in the effects of gate tunneling current and predict the trends, the characteristics of MOS devices are studied in detail using HSPICE simulator. The simulation results in BSIM4 model well agree with the model proposed. The theory and experiment data are contributed to the VLSI circuit design in the future.


2004 ◽  
Author(s):  
G. V. Chucheva ◽  
A. S. Dudnikov ◽  
E. I. Goldman ◽  
N. A. Zaitsev ◽  
Alexander G. Zhdan

1999 ◽  
Vol 592 ◽  
Author(s):  
Hao Guan ◽  
Y. D. He ◽  
M. F. Li ◽  
Byung Jin Cho ◽  
Zhong Dong

ABSTRACTThe conduction mechanism of quasi-breakdown (QB) for ultra-thin gate oxide has been studied in dual-gate CMOSFET with a 3.7 nm thick gate oxide. Systematic carrier separation experiments were conducted to investigate the evolutions of gate, source/drain, and substrate currents before and after gate oxide QB. Our experimental results clearly show that QB is due to the formation of a local physically-damaged-region (LPDR) at Si/SiO2 interface. At this region, the effective oxide thickness is reduced to the direct tunneling (DT) regime. The observed high gate leakage current is due to DT electron or hole currents through the region where the LPDR is generated. Under substrate injection stress condition, there is several orders of magnitude increase of Isub(Is/d) at the onset point of QB for n(p) - MOSFET, which mainly corresponds to valence electrons DT from the substrate to the gate. Consequently, cold holes are left in the substrate and measured as substrate current. Under gate injection stress condition, there is sudden drop and even change of sign of Isub(Is/d) at the onset point of QB for n(p)-MOSFET, which corresponds to the disappearance of impact ionization and the appearance of hole DT current from the substrate to the gate. In the LPDR region, the damaged structure may have two or multi metastable states corresponding to different effective oxide thickness. The thermal transition between two or multi metastable states leads to random telegraph switching noise (RTSN) fluctuation between two or multi levels.


Author(s):  
Hakkee Jung

Threshold voltage roll-off is analyzed for sub-10 nm asymmetric double gate (DG) MOSFET. Even asymmetric DGMOSFET will increase threshold voltage roll-off in sub-10 nm channel length because of short channel effects due to the increase of tunneling current, and this is an obstacle against the miniaturization of asymmetric DGMOSFET. Since asymmetric DGMOSFET can be produced differently in top and bottom oxide thickness, top and bottom oxide thicknesses will affect the threshold voltage roll-off. To analyze this, <em>thermal</em><em> </em>emission current and tunneling current have been calculated, and threshold voltage roll-off by the reduction of channel length has been analyzed by using channel thickness and top/bottom oxide thickness as parameters. As a result, it is found that, in short channel asymmetric double gate MOSFET, threshold voltage roll-off is changed greatly according to top/bottom gate oxide thickness, and that threshold voltage roll-off is more influenced by silicon thickness. In addition, it is found that top and bottom oxide thickness have a relation of inverse proportion mutually for maintaining identical threshold voltage. Therefore, it is possible to reduce the leakage current of the top gate related with threshold voltage by increasing the thickness of the top gate oxide while maintaining the same threshold voltage.


2011 ◽  
Vol 216 ◽  
pp. 167-170
Author(s):  
Jian Liu ◽  
Li Li ◽  
X.H. Zhang

A physics-based threshold voltage model is proposed, according to the electrostatics distribution in Si body of FinFET which is obtained by 2-D numerical simulation. Threshold voltage of FinFET calculated from the model is matched with results of numerical simulation. Influences of polysilicon gate doping concentration, Si body doping concentration, the width and height of Si body and the gate oxide thickness on threshold voltage were investigated. As results,Si body doping concentration, gate doping concentration and the width of Si body have been found to be the most important parameters for the design of threshold voltage of FinFET-like devices.


Sign in / Sign up

Export Citation Format

Share Document