Nondestructive Visual Search for Fossils in Rock Using X-Ray Interferometry Imaging

2000 ◽  
Vol 39 (Part 2, No. 10A) ◽  
pp. L1009-L1011 ◽  
Author(s):  
Masami Ando ◽  
Junyuan Chen ◽  
Kazuyuki Hyodo ◽  
Koichi Mori ◽  
Hiroshi Sugiyama ◽  
...  
Keyword(s):  
Author(s):  
Stephen R. Mitroff ◽  
Justin M. Ericson ◽  
Benjamin Sharpe

Objective The study’s objective was to assess a new personnel selection and assessment tool for aviation security screeners. A mobile app was modified to create a tool, and the question was whether it could predict professional screeners’ on-job performance. Background A variety of professions (airport security, radiology, the military, etc.) rely on visual search performance—being able to detect targets. Given the importance of such professions, it is necessary to maximize performance, and one means to do so is to select individuals who excel at visual search. A critical question is whether it is possible to predict search competency within a professional search environment. Method Professional searchers from the USA Transportation Security Administration (TSA) completed a rapid assessment on a tablet-based X-ray simulator (XRAY Screener, derived from the mobile technology app Airport Scanner; Kedlin Company). The assessment contained 72 trials that were simulated X-ray images of bags. Participants searched for prohibited items and tapped on them with their finger. Results Performance on the assessment significantly related to on-job performance measures for the TSA officers such that those who were better XRAY Screener performers were both more accurate and faster at the actual airport checkpoint. Conclusion XRAY Screener successfully predicted on-job performance for professional aviation security officers. While questions remain about the underlying cognitive mechanisms, this quick assessment was found to significantly predict on-job success for a task that relies on visual search performance. Application It may be possible to quickly assess an individual’s visual search competency, which could help organizations select new hires and assess their current workforce.


2018 ◽  
Vol 21 (3) ◽  
pp. 45-36
Author(s):  
A. K. Volkov ◽  
V. V. Ionov

The X-ray screening systems operators’ professional training is based on the CBT (computer-based training) principle, which has algorithms of adaptive training. These algorithms in existing computer simulators include feedback mechanisms on the basis of trainability exponents – such as the frequency of detecting dangerous objects, the frequency of false alarms and detection time. Further enhancement of the operators’ simulator training effectiveness is associated with the integration of psychophysiological mechanisms providing monitoring of their functional state. Based on the analysis of the particularities of x-ray screening systems operators’ professional training associated with the formation of competences in dangerous objects visual search, the most perspective method is the Eye tracking technology. Domestic and foreign studies of the eye movements characteristics while solving professional tasks in training process are actively developed in various areas. There are no studies of visual search peculiarities in domestic practice in contrast to exterior studies. This research is aimed at considering the usage of Eye tracking technology in the training of x-ray screening systems operators. As the result of the experimental research with the use of mobile eye-tracker Sensomotoric Instruments Eye Tracking Glasses 2.0 the statistical data of eye movement parameters of two groups of subjects with different levels of training have been received. The application of cluster and discriminant analyses methods allowed to identify General classes of these parameters, as well as to obtain the discriminants functions for each group under examination. The theoretical significance of the peculiarities of the operators’ eye movement studies is to identify the patterns of prohibited items visual search. The practical importance of implementation of Eye tracking technology and statistical analysis methods is to increase the reliability of assessment the level of formed competence of x-ray screening systems’ operators in visual search, as well as to develop the potential system of operators’ state monitoring and assessing their visual fatigue.


2016 ◽  
Vol 43 (3) ◽  
pp. 1563-1575 ◽  
Author(s):  
Howard C. Gifford ◽  
Zhihua Liang ◽  
Mini Das
Keyword(s):  

2020 ◽  
Vol 82 (4) ◽  
pp. 1669-1681
Author(s):  
Claudia R. Hebert ◽  
Li Z. Sha ◽  
Roger W. Remington ◽  
Yuhong V. Jiang
Keyword(s):  

2015 ◽  
Author(s):  
Zhengqiang Jiang ◽  
Zhihua Liang ◽  
Mini Das ◽  
Howard C. Gifford

Perception ◽  
1980 ◽  
Vol 9 (3) ◽  
pp. 339-344 ◽  
Author(s):  
Dennis P Carmody ◽  
Calvin F Nodine ◽  
Harold L Kundel

Detection of small tumors in chest x-ray films was studied under tachistoscopic viewing conditions designed to simulate single fixations varying in dwell time, found in free search. Two questions were asked: How much dwell time is required to detect a nodule (experiment 1)? How effective are peripheral inputs in the detection of a nodule (experiment 2)? Our findings indicate that a dwell time of 300 ms was sufficient to detect 85% of the nodules when they were viewed directly. Detection accuracy was reduced by one-half when the tumor was located 5° from the axis of gaze. Taken together with data from eye movement experiments, these results provide useful estimates of perceptual and cognitive parameters of visual search.


1994 ◽  
Vol 144 ◽  
pp. 275-277
Author(s):  
M. Karlický ◽  
J. C. Hénoux

AbstractUsing a new ID hybrid model of the electron bombardment in flare loops, we study not only the evolution of densities, plasma velocities and temperatures in the loop, but also the temporal and spatial evolution of hard X-ray emission. In the present paper a continuous bombardment by electrons isotropically accelerated at the top of flare loop with a power-law injection distribution function is considered. The computations include the effects of the return-current that reduces significantly the depth of the chromospheric layer which is evaporated. The present modelling is made with superthermal electron parameters corresponding to the classical resistivity regime for an input energy flux of superthermal electrons of 109erg cm−2s−1. It was found that due to the electron bombardment the two chromospheric evaporation waves are generated at both feet of the loop and they propagate up to the top, where they collide and cause temporary density and hard X-ray enhancements.


1994 ◽  
Vol 144 ◽  
pp. 1-9
Author(s):  
A. H. Gabriel

The development of the physics of the solar atmosphere during the last 50 years has been greatly influenced by the increasing capability of observations made from space. Access to images and spectra of the hotter plasma in the UV, XUV and X-ray regions provided a major advance over the few coronal forbidden lines seen in the visible and enabled the cooler chromospheric and photospheric plasma to be seen in its proper perspective, as part of a total system. In this way space observations have stimulated new and important advances, not only in space but also in ground-based observations and theoretical modelling, so that today we find a well-balanced harmony between the three techniques.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


Sign in / Sign up

Export Citation Format

Share Document