Effect of the Tantalum Barrier Layer on the Electromigration and Stress Migration Resistance of Physical-Vapor-Deposited Copper Interconnect

2002 ◽  
Vol 41 (Part 1, No. 5A) ◽  
pp. 3057-3064 ◽  
Author(s):  
Yu-Lung Chin ◽  
Bi-Shiou Chiou ◽  
Wen-Fa Wu
Author(s):  
Michio Ashida ◽  
Yasukiyo Ueda

An anodic oxide film is formed on aluminum in an acidic elecrolyte during anodizing. The structure of the oxide film was observed directly by carbon replica method(l) and ultra-thin sectioning method(2). The oxide film consists of barrier layer and porous layer constructed with fine hexagonal cellular structure. The diameter of micro pores and the thickness of barrier layer depend on the applying voltage and electrolyte. Because the dimension of the pore corresponds to that of colloidal particles, many metals deposit in the pores. When the oxide film is treated as anode in emulsion of polyelectrolyte, the emulsion particles migrate onto the film and deposit on it. We investigated the behavior of the emulsion particles during electrodeposition.Aluminum foils (99.3%) were anodized in either 0.25M oxalic acid solution at 30°C or 3M sulfuric acid solution at 20°C. After washing with distilled water, the oxide films used as anode were coated with emulsion particles by applying voltage of 200V and then they were cured at 190°C for 30 minutes.


1993 ◽  
Vol 3 (8) ◽  
pp. 1617-1623
Author(s):  
P. Gaucher ◽  
J. Hector ◽  
J. P. Ganne
Keyword(s):  

2002 ◽  
Vol 716 ◽  
Author(s):  
C. L. Gan ◽  
C. V. Thompson ◽  
K. L. Pey ◽  
W. K. Choi ◽  
F. Wei ◽  
...  

AbstractElectromigration experiments have been carried out on simple Cu dual-damascene interconnect tree structures consisting of straight via-to-via (or contact-to-contact) lines with an extra via in the middle of the line. As with Al-based interconnects, the reliability of a segment in this tree strongly depends on the stress conditions of the connected segment. Beyond this, there are important differences in the results obtained under similar test conditions for Al-based and Cu-based interconnect trees. These differences are thought to be associated with variations in the architectural schemes of the two metallizations. The absence of a conducting electromigrationresistant overlayer in Cu technology, and the possibility of liner rupture at stressed vias lead to significant differences in tree reliabilities in Cu compared to Al.


Author(s):  
C.H. Zhong ◽  
Sung Yi

Abstract Ball shear forces of plastic ball grid array (PBGA) packages are found to decrease after reliability test. Packages with different ball pad metallurgy form different intermetallic compounds (IMC) thus ball shear forces and failure modes are different. The characteristic and dynamic process of IMC formed are decided by ball pad metallurgy which includes Ni barrier layer and Au layer thickness. Solder ball composition also affects IMC formation dynamic process. There is basically no difference in ball shear force and failure mode for packages with different under ball pad metallurgy before reliability test. However shear force decreased and failure mode changed after reliability test, especially when packages exposed to high temperature. Major difference in ball shear force and failure mode was found for ball pad metallurgy of Ni barrier layer including Ni-P, pure Ni and Ni-Co. Solder ball composition was found to affect the IMC formation rate.


Author(s):  
Qiang Gao ◽  
Mark Zhang ◽  
Ming Li ◽  
Chorng Niou ◽  
W.T. Kary Chien

Abstract This paper examines copper-interconnect integrated circuit transmission electron microscope (TEM) sample contamination. It investigates the deterioration of the sample during ion milling and storage and introduces prevention techniques. The paper discusses copper grain agglomeration issues barrier/seed step coverage checking. The high temperature needed for epoxy solidifying was found to be harmful to sidewall coverage checking of seed. Single beam modulation using a glass dummy can efficiently prevent contamination of the area of interest in a TEM sample during ion milling. Adoption of special low-temperature cure epoxy resin can greatly reduce thermal exposure of the sample and prevent severe agglomeration of copper seed on via sidewall. TEM samples containing copper will deteriorate when stored in ordinary driers and sulphur contamination was found at the deteriorated point on the sample. Isolation of the sample from the ambient atmosphere has been verified to be very effective in protecting the TEM sample from deterioration.


2013 ◽  
pp. 215-218
Author(s):  
Robert O. Hatch ◽  
Craig M. Giles ◽  
Jay S. Creiglow ◽  
David R. Smith

The use of sodium propylene glycol for thick juice storage was investigated at Spreckels Sugar Company, in Brawley, California (USA). Sodium-polypropylene glycol has a density of 1.07 and does not mix with thick juice. Therefore it is suitable as a barrier layer. Chemical properties of propylene glycol, and the deposition on the top of thick juice are described. First results of the last campaign are compared with data from previous years. A significantly lower tendency in the reduction of the quality of the thick juice was found.


Sign in / Sign up

Export Citation Format

Share Document