Deep-Level Transient Spectroscopy Studies of Filling Behavior of a Hydrogen-Related Metastable Defect in n-Type Silicon

2005 ◽  
Vol 44 (6A) ◽  
pp. 3789-3792 ◽  
Author(s):  
Yutaka Tokuda ◽  
Wakana Nakamura ◽  
Koji Nakashima ◽  
Hiroyuki Iwata
1993 ◽  
Vol 324 ◽  
Author(s):  
Yutaka Tokuda ◽  
Isao Katoh ◽  
Masayuki Katayama ◽  
Tadasi Hattori

AbstractElectron traps in Czochralski–grown n-type (100) silicon with and without donor annihilation annealing have been studied by deep–level transient spectroscopy. A total of eight electron traps are observed in the concentration range 1010 –1011 cm −3. It is thought that these are grown–in defects during crystal growth cooling period including donor annihilation annealing. It is suggested that two electron traps labelled A2 (Ec–0.34 eV) and A3 (Ec–0.38 eV) of these traps are correlated with oxygen–related defects. It is shown that traps A2 and A3 are formed around 400 ° C and disappear around 500–600 ° C.


1989 ◽  
Vol 4 (2) ◽  
pp. 241-243 ◽  
Author(s):  
Yutaka Tokuda ◽  
Nobuji Kobayashi ◽  
Yajiro Inoue ◽  
Akira Usami ◽  
Makoto Imura

The annihilation of thermal donors in silicon by rapid thermal annealing (RTA) has been studied with deep-level transient spectroscopy. The electron trap AO (Ec – 0.13 eV) observed after heat treatment at 450 °C for 10 h, which is identified with the thermal donor, disappears by RTA at 800 °C for 10 s. However, four electron traps, A1 (Ec 0.18 eV), A2 (Ec – 0.25 eV), A3 (Ec – 0.36 eV), and A4 (Ec – 0.52 eV), with the concentration of ∼1012 cm−3 are produced after annihilation of thermal donors by RTA. These traps are also observed in silicon which receives only RTA at 800 °C. This indicates that traps A1–A4 are thermal stress induced or quenched-in defects by RTA, not secondary defects resulting from annealing of thermal donors.


2015 ◽  
Vol 242 ◽  
pp. 163-168 ◽  
Author(s):  
Ilia L. Kolevatov ◽  
Frank Herklotz ◽  
Viktor Bobal ◽  
Bengt Gunnar Svensson ◽  
Edouard V. Monakhov

The evolution of irradiation-induced and hydrogen-related defects in n-type silicon in the temperature range 0 – 300 °C has been studied by deep level transient spectroscopy (DLTS) and minority carrier transient spectroscopy (MCTS). Implantation of a box-like profile of hydrogen was performed into the depletion region of a Schottky diode to undertake the DLTS and MCTS measurements. Proportionality between the formation of two hydrogen-related deep states and a decrease of the vacancy-oxygen center concentration was found together with the appearance of new hydrogen-related energy levels.


1988 ◽  
Vol 63 (11) ◽  
pp. 5375-5379 ◽  
Author(s):  
A. Rohatgi ◽  
S. K. Pang ◽  
T. K. Gupta ◽  
W. D. Straub

Solar Cells ◽  
1988 ◽  
Vol 24 (3-4) ◽  
pp. 279-286 ◽  
Author(s):  
W.I. Lee ◽  
N.R. Taskar ◽  
S.K. Ghandhi ◽  
J.M. Borrego

2012 ◽  
Vol 9 (10-11) ◽  
pp. 1992-1995 ◽  
Author(s):  
C. K. Tang ◽  
L. Vines ◽  
B. G. Svensson ◽  
E. V. Monakhov

1998 ◽  
Vol 73 (21) ◽  
pp. 3126-3128 ◽  
Author(s):  
P. Deixler ◽  
J. Terry ◽  
I. D. Hawkins ◽  
J. H. Evans-Freeman ◽  
A. R. Peaker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document