Femtosecond-Laser-Assisted Chemical Vapor Deposition of Cr Metal

2005 ◽  
Vol 44 (No. 19) ◽  
pp. L596-L598 ◽  
Author(s):  
Taro Hitosugi ◽  
Takeshi Mizuno
2016 ◽  
Vol 10 (3) ◽  
pp. 441-450 ◽  
Author(s):  
Hao-Bo Jiang ◽  
Yong-Lai Zhang ◽  
Yan Liu ◽  
Xiu-Yan Fu ◽  
Yun-Fei Li ◽  
...  

2012 ◽  
Vol 1455 ◽  
Author(s):  
Travis J. DeJournett ◽  
James B. Spicer

ABSTRACTWe describe a scalable synthesis process for the production and patterning of polymer matrix nanocomposites (PMNCs) using femtosecond laser irradiation to target specific functional behaviors. A modified, in situ chemical vapor deposition (CVD), nanoinfusion process was used to nucleate and grow nanoparticles in the bulk of an optically transparent polytetrafluoroethylene-co-hexafluoropropylene (FEP) polymer matrix. Metallic nanoparticles synthesized with this process can have a strong optical absorption at their surface plasmon resonance (SPR) frequency and we have utilized this property to selectively irradiate and pattern nanocomposites via femtosecond, photothermal heating. If the nanoparticle environment includes species used for chemical vapor deposition, the heat causes a localized decomposition of the precursor species in the immediate vicinity of the nanoparticle leading to a variety of core-shell nanostructures. Using this processing scheme, we have grown shells of tungsten oxide around silver nanoparticles within the polymer matrix resulting in a 40 nm red shift in the SPR of the silver nanoparticles in regions of the material exposed to femtosecond laser pulses. This process has also been adapted to polymers containing tungsten oxide nanoparticles so that the photocatalytic behavior of the particles could be used to the decompose precursor species in the immediate vicinity of the irradiated nanoparticles. These results demonstrate that, by using optical masks and laser processing, it is possible to synthesize nanocomposites with a high degree of control over the location, composition, size, and distribution of nanoparticles within a polymer matrix resulting in patterned materials with tailored electrical, optical, and photocatalytic properties.


2013 ◽  
Vol 52 (8S) ◽  
pp. 08JK08 ◽  
Author(s):  
Mindaugas Ščiuka ◽  
Tomas Grinys ◽  
Mantas Dmukauskas ◽  
Viktorija Plerpaitė ◽  
Andrius Melninkaitis

Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


Author(s):  
M. E. Twigg ◽  
E. D. Richmond ◽  
J. G. Pellegrino

For heteroepitaxial systems, such as silicon on sapphire (SOS), microtwins occur in significant numbers and are thought to contribute to strain relief in the silicon thin film. The size of this contribution can be assessed from TEM measurements, of the differential volume fraction of microtwins, dV/dν (the derivative of the microtwin volume V with respect to the film volume ν), for SOS grown by both chemical vapor deposition (CVD) and molecular beam epitaxy (MBE).In a (001) silicon thin film subjected to compressive stress along the [100] axis , this stress can be relieved by four twinning systems: a/6[211]/( lll), a/6(21l]/(l1l), a/6[21l] /( l1l), and a/6(2ll)/(1ll).3 For the a/6[211]/(1ll) system, the glide of a single a/6[2ll] twinning partial dislocation draws the two halves of the crystal, separated by the microtwin, closer together by a/3.


2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-885-Pr3-892 ◽  
Author(s):  
N. Popovska ◽  
S. Schmidt ◽  
E. Edelmann ◽  
V. K. Wunder ◽  
H. Gerhard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document