Experimental Study on Electrostatic Spark Ignitability of Coating Polymer Powders in Electric Field with Corona Discharge

2006 ◽  
Vol 45 (6A) ◽  
pp. 5207-5209 ◽  
Author(s):  
Kwang-Seok Choi ◽  
Mizuki Yamaguma ◽  
Kyoon-Tae Moon ◽  
Jae-Hee Joung
Author(s):  
Yingxia Wei ◽  
Yaoxiang Liu ◽  
Tie-Jun Wang ◽  
Na Chen ◽  
Jingjing Ju ◽  
...  

We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge (CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation (FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 333
Author(s):  
Pedro Llovera-Segovia ◽  
Gustavo Ortega-Braña ◽  
Vicente Fuster-Roig ◽  
Alfredo Quijano-López

Piezoelectric polymer cellular films have been developed and improved in the past decades. These piezoelectric materials are based on the polarization of the internal cells by means of induced discharges in the gas inside the cells. Internal discharges are driven by an external applied electric field. With this polarization method, cellular polypropylene (PP) polymers exhibit a high piezoelectric coefficient d33 and have been investigated because of their low dielectric polarization, high resistivity, and flexibility. Charging polymers foams is normally obtained by applying a corona discharge to the surface with a single tip electrode-plane arrangement or a triode electrode, which consists of a tip electrode-plane structure with a controlled potential intermediate mesh. Corona charging allows the surface potential of the sample to rise without breakdown or surface flashover. A charging method has been developed without corona discharge, and this has provided good results. In our work, a method has been developed to polarize polypropylene foams by applying an insulated high-voltage electrode on the surface of the sample. The dielectric layer in series with the sample allows for a high internal electric field to be reached in the sample but avoids dielectric breakdown of the sample. The distribution of the electric field between the sample and the dielectric barrier has been calculated. Experimental results with three different electrodes present good outcome in agreement with the calculations. High d33 constants of about 880 pC/N have been obtained. Mapping of the d33 constant on the surface has also been carried out showing good homogeneity on the area under the electrode.


10.14311/1033 ◽  
2008 ◽  
Vol 48 (4) ◽  
Author(s):  
Y. Klenko ◽  
V. Scholtz

Point-to-plane corona discharge is widely used for modifying polymer surfaces for biomedical applications and for sterilization and decontamination. This paper focuses on an experimental investigation of the influence of the single-point and multi-point corona discharge electric field on gel surface. Three types of gelatinous agar were used as the gel medium: blood agar, nutrient agar and Endo agar. The gel surface modification was studied for various time periods and discharge currents. 


Sign in / Sign up

Export Citation Format

Share Document