Growth Rate Measurement of Lateral Grains in Silicon Film During Excimer Laser Annealing

2007 ◽  
Vol 46 (No. 25) ◽  
pp. L611-L613 ◽  
Author(s):  
Wenchang Yeh ◽  
Chun-Jun Zhuang ◽  
Dunyuan Ke
1999 ◽  
Vol 557 ◽  
Author(s):  
Kee-Chan Park ◽  
Kwon-Young Choi ◽  
Jae-Hong Jeon ◽  
Min-Cheol Lee ◽  
Min-Koo Han

AbstractA novel method to control the recrystallization depth of amorphous silicon (a-Si) film during the excimer laser annealing (ELA) is proposed in order to preserve a-Si that is useful for fabrication of poly-Si TFT with a-Si offset in the channel. A XeCl excimer laser beam is irradiated on a triple film structure of a-Si thin native silicon oxide (~20Å)/thick a-Si layer. Only the upper a-Si film is recrystallized by the laser beam irradiation, whereas the lower thick a-Si film remains amorphous because the thin native silicon oxide layer stops the grain growth of the poly-crystalline silicon (poly-Si). So that the thin oxide film sharply divides the upper poly-Si from the lower a-Si.


2003 ◽  
Vol 769 ◽  
Author(s):  
Sang-Myeon Han ◽  
Min-Cheol Lee ◽  
Su-Hyuk Kang ◽  
Moon-Young Shin ◽  
Min-Koo Han

AbstractAn ultra-low temperature (< 200°C) polycrystalline silicon (poly-Si) film is fabricated for the plastic substrate application using inductively coupled plasma chemical vapor deposition (ICP-CVD) and excimer laser annealing. The precursor active layer is deposited using the SiH4/He mixture at 150°C (substrate). The deposited silicon film consists of crystalline component as well as hydrogenated amorphous component. The hydrogen content in the precursor layer is less than 5 at%. The grain size of the precursor active silicon film is about 200nm and it is increased up to 500nm after excimer laser irradiation.


2010 ◽  
Vol 13 (10) ◽  
pp. H346 ◽  
Author(s):  
Moojin Kim ◽  
GuangHai Jin ◽  
Hoonkee Min ◽  
HoKyoon Chung ◽  
Sangsoo Kim ◽  
...  

2003 ◽  
Vol 762 ◽  
Author(s):  
In-Hyuk Song ◽  
Su-Hyuk Kang ◽  
Woo-Jin Nam ◽  
Min-Koo Han

AbstractWe have successfully obtained large lateral grains with well-controlled grain boundary. The proposed excimer laser annealing (ELA) method produces 2-dimensionally controlled grain growth because the temperature gradient is induced in two directions. Along the channel direction, the floating active structure produces large thermal gradient due to very low thermal conductivity of the air-gap. Along the perpendicular direction to the channel, the surface tension effect also produces thermal gradient. The proposed ELA method can control the grain boundary perpendicular and parallel to current path with only one laser irradiation.


1989 ◽  
Vol 146 ◽  
Author(s):  
Takashi Noguchi ◽  
Kazuhiro Tajima ◽  
Yasushi Morita

ABSTRACTThin silicon films with dendritic large grains can be obtained by Si+ or P+ implantation and subsequent low temperature annealing of the silicon film. We tried further exposing the films with an excimer laser after the grain growth. As a result, improvement of electronic properties such as high carrier mobility or low resistivity were obtained. By TEM observation, polycrystalline grains with a dendritic structure did not melt after laser annealing and it was found that the improvement of electronic properties were achieved mainly due to the improvement of crystallinity by U-V(Ultra-Violet) reflectance, ESR(Electron Spin Resonance) analysis and TFT characteristics. We are convinced that this advanced laser pulse annealing method is an ideal RTA process in the near future and is expected to be applicable to ULSI processes for inter connects, high density stacked SRAM and for large area electronics on glass such as a contact line sensor or LCD(Liquid Crystal Display).


2001 ◽  
Vol 685 ◽  
Author(s):  
Kee-Chan Park ◽  
In-Hyuk Song ◽  
Sang-Hoon Jung ◽  
Min-Koo Han

AbstractXeCl excimer laser was irradiated on metal induced laterally crystallized (MILC) polycrystalline silicon (poly-Si) film in order to eliminate the intra-grain defects of MILC poly-Si film which incorporated 2 μm wide metal induced crystallized (MIC) poly-Si line pattern. On the irradiation of the laser beams, different melt and recrystallization phenomena were observed in the MILC and the MIC poly-Si region due to the Ni content difference in each film. The transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) measurements indicated that the melting temperature of the poly-Si film decreased as the Ni content increased. With the laser irradiation energy density of 370 mJ/cm2, 2 μm long defect-free poly-Si grain was successfully grown in the MILC poly-Si due to the melting temperature variation at the MILC-MIC poly-Si boundary.


Shinku ◽  
1998 ◽  
Vol 41 (9) ◽  
pp. 798-801 ◽  
Author(s):  
Naoto MATSUO ◽  
Yoichiro AYA ◽  
Takeshi KANAMORI ◽  
Tomoyuki NOUDA ◽  
Hiroki HAMADA ◽  
...  

2007 ◽  
Vol 46 (No. 44) ◽  
pp. L1061-L1063 ◽  
Author(s):  
Naoto Matsuo ◽  
Kazuya Uejukkoku ◽  
Akira Heya ◽  
Sho Amano ◽  
Yasuyuki Takanashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document