A Novel Coplanar-Waveguide Band-Pass Filter Utilizing the Inductor–Capacitor Structure in 0.18 $\mu$m Complementary Metal–Oxide–Semiconductor Technology for Millimeter-Wave Applications

2012 ◽  
Vol 51 ◽  
pp. 034201 ◽  
Author(s):  
Yo-Sheng Lin ◽  
Pen-Li Huang ◽  
Tao Wang ◽  
Shey-Shi Lu
2016 ◽  
Vol 26 (04) ◽  
pp. 1750055 ◽  
Author(s):  
Aymen Ben Hammadi ◽  
Mongia Mhiri ◽  
Fayrouz Haddad ◽  
Sehmi Saad ◽  
Kamel Besbes

This paper describes the design of a novel cascode-grounded tunable active inductor and its application in an active band-pass filter (BPF) suitable for multi-band radio frequency (RF) front-end circuits. The proposed active inductor circuit uses feedback resistance to improve the equivalent inductance and the quality factor. The novelty of this work lies on the use of a few number of multi-finger transistors, which allows reducing strongly the power consumption and the silicon area. In other words, we demonstrate that the use of variable P-type Metal-Oxide-Semiconductor (PMOS) resistor and controllable current source have a good potential for wide tuning in terms of inductance value, quality factor and frequency operation. The RF BPF is realized using the proposed active inductor with suitable input and output buffer stages. The tuning of the center frequency for multi-band operation is achieved through control voltages. The designed active inductor and RF BPF have been implemented in a standard 0.13[Formula: see text][Formula: see text]m Complementary Metal Oxide Semiconductor (CMOS) technology. The simulation results are compared between schematic and post-layout design for inductance value, quality factor, transmission coefficient S21 and noise. This design yields encouraging results: the inductance value can be tuned from 10.94 to 44.17[Formula: see text]nH with an optimal quality factor around 2,581. In addition, the center frequency of the BPF can be tuned between 2 and 4.84[Formula: see text]GHz with an average insertion loss of [Formula: see text][Formula: see text]dB. Throughout this range, the noise figure is between 10.49 and 9.22[Formula: see text]dB with an input referred 1[Formula: see text]dB compression point of [Formula: see text][Formula: see text]dBm and IIP3 of 7.36[Formula: see text]dBm. The filter occupies 25.43[Formula: see text][Formula: see text]m of active area without pads and consumes between 2.38 and 2.84[Formula: see text]mW from a 1[Formula: see text]V supplying voltage.


2020 ◽  
Vol 1 (9) ◽  
pp. 3200-3207
Author(s):  
Stephan Steinhauer ◽  
Eva Lackner ◽  
Florentyna Sosada-Ludwikowska ◽  
Vidyadhar Singh ◽  
Johanna Krainer ◽  
...  

SnO2-based chemoresistive sensors integrated in complementary metal-oxide-semiconductor technology were functionalized with ultrasmall Pt nanoparticles, resulting in carbon monoxide sensing properties with minimized humidity interference.


Author(s):  
Fang Zhu ◽  
Guo Qing Luo

Abstract In this paper, a millimeter-wave (MMW) dual-mode and dual-band switchable Gilbert up-conversion mixer in a commercial 65-nm complementary metal oxide semiconductor (CMOS) process is presented. By simply changing the bias, the proposed CMOS Gilbert up-conversion mixer can be switched between subharmonic and fundamental operation modes for MMW dual-band applications. With a low local oscillator pumping power of 3 dBm and low dc power consumption of 6 mW, the proposed CMOS Gilbert up-conversion mixer exhibits a measured conversion gain of −0.5 ± 1.5 dB from 37 to 50 GHz and 2.5 ± 1.5 dB from 17.5 to 32 GHz for the subharmonic and fundamental modes, respectively.


2021 ◽  
Author(s):  
Wen-Tao Wang ◽  
Hao-Ran Zhu ◽  
Yu-Fa Sun ◽  
Zhi-Xiang Huang ◽  
Xian-Liang Wu

Sign in / Sign up

Export Citation Format

Share Document