Optical Excitation of the Rotational Transition of Methane in Condensed Xenon

1978 ◽  
Vol 44 (5) ◽  
pp. 1755-1756 ◽  
Author(s):  
Takao Nanba ◽  
Minoru Sagara ◽  
Mikihiko Ikezawa
2018 ◽  
Vol 115 (20) ◽  
pp. 5072-5076 ◽  
Author(s):  
Christian Schröter ◽  
Jong Chan Lee ◽  
Thomas Schultz

We present mass-correlated rotational alignment spectroscopy, based on the optical excitation of a coherent rotational quantum wave and the observation of temporal wave interferences in a mass spectrometer. Combined electronic and opto-mechanical delays increased the observation time and energy resolution by an order of magnitude compared with preceding time-domain measurements. Rotational transition frequencies were referenced to an external clock for accurate absolute frequency measurements. Rotational Raman spectra for six naturally occurring carbon disulfide isotopologues were resolved with 3 MHz resolution over a spectral range of 500 GHz. Rotational constants were determined with single-kilohertz accuracy, competitive with state-of-the-art frequency domain measurements.


1980 ◽  
Vol 48 (1) ◽  
pp. 228-234 ◽  
Author(s):  
Takao Nanba ◽  
Minoru Sagara ◽  
Mikihiko Ikezawa

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-737-C8-738
Author(s):  
Y. S. Kwon ◽  
S. Kimura ◽  
T. Nanba ◽  
S. Kunii ◽  
M. Ikezawa ◽  
...  

JETP Letters ◽  
2020 ◽  
Vol 112 (3) ◽  
pp. 145-149
Author(s):  
S. N. Nikolaev ◽  
M. A. Chernopitsskii ◽  
V. S. Bagaev ◽  
V. S. Krivobok

Author(s):  
L. Solymar ◽  
D. Walsh ◽  
R. R. A. Syms

Both intrinsic and extrinsic semiconductors are discussed in terms of their band structure. The acceptor and donor energy levels are introduced. Scattering is discussed, from which the conductivity of semiconductors is derived. Some mathematical relations between electron and hole densities are derived. The mobilities of III–V and II–VI compounds and their dependence on impurity concentrations are discussed. Band structures of real and idealized semiconductors are contrasted. Measurements of semiconductor properties are reviewed. Various possibilities for optical excitation of electrons are discussed. The technology of crystal growth and purification are reviewed, in particular, molecular beam epitaxy and metal-organic chemical vapour deposition.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1373
Author(s):  
Fadis F. Murzakhanov ◽  
Boris V. Yavkin ◽  
Georgiy V. Mamin ◽  
Sergei B. Orlinskii ◽  
Ivan E. Mumdzhi ◽  
...  

Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (VB−). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating VB− centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of D = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the VB− centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the VB− spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the VB− spin embedded in the hBN as a probe.


Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1811-1829 ◽  
Author(s):  
Zhipeng Li ◽  
Tianmeng Wang ◽  
Shengnan Miao ◽  
Zhen Lian ◽  
Su-Fei Shi

AbstractMonolayer transitional metal dichalcogenides (TMDCs), a new class of atomically thin semiconductor, respond to optical excitation strongly with robust excitons, which stem from the reduced screening in two dimensions. These excitons also possess a new quantum degree of freedom known as valley spin, which has inspired the field of valleytronics. The strongly enhanced Coulomb interaction allows the exciton to bind with other particles to form new excitonic states. However, despite the discovery of trions, most of the excitonic states in monolayer TMDCs remain elusive until recently, when new light was shed into the fascinating excitonic fine structures with drastically improved sample quality through boron nitride encapsulation. Here, we review the latest research progress on fine structures of excitonic states in monolayer TMDCs, with a focus on tungsten-based TMDCs and related alloy. Many of the new excitonic complexes inherit the valley degree of freedom, and the valley-polarized dark excitonic states are of particular interest because of their long lifetime and possible long valley coherence time. The capability of resolving the excitonic fine structures also enables the investigation of exciton–phonon interactions. The knowledge of the interlayer between excitons and other particles not only advances our understanding of many-body effects in the monolayer TMDCs but also provides guidance on future applications based on TMDCs.


Sign in / Sign up

Export Citation Format

Share Document