scholarly journals Nuclear Structure Effects on Weak Nuclear Form Factors of 0+-0- Transitions in A=16 System

1979 ◽  
Vol 62 (3) ◽  
pp. 706-712 ◽  
Author(s):  
K. Koshigiri ◽  
H. Ohtsubo ◽  
M. Morita
1980 ◽  
Vol 58 (12) ◽  
pp. 1686-1690 ◽  
Author(s):  
W. R. Falk

Calculations of the angular distributions of the cross-sections and analyzing powers in the [Formula: see text] Al reaction have been made using microscopic form factors. A wide range of shapes of the microscopic form factors, simulating different degrees of configuration mixing in the nuclear wave functions, fail to provide angular distributions of the analyzing powers that agree with experiment for the 2.73 and 4.41 MeV, 5/2+ states.


2019 ◽  
Vol 204 ◽  
pp. 05005 ◽  
Author(s):  
R. N. Faustov ◽  
A. A. Krutov ◽  
A. P. Martynenko ◽  
F. A. Martynenko ◽  
O. S. Sukhorukova

We calculate corrections of orders α4, α5, α6 to the (1S – 2S) fine structure interval in muonic hydrogen (μp), muonic tritium (μt) and muonic helium ion $$((\mu _2^3He) + )$$. They are determined by the effects of vacuum polarization, nuclear structure and recoil and relativistic corrections. The nuclear structure effects are taken into account in terms of the charge radii of the nuclei in one-photon interaction and in terms of electromagnetic form-factors in the case of two-photon interaction. The obtained results for the (1S – 2S) splitting can be used for a comparison with future experimental data.


2021 ◽  
Vol 36 (04) ◽  
pp. 2150022
Author(s):  
A. E. Dorokhov ◽  
R. N. Faustov ◽  
A. P. Martynenko ◽  
F. A. Martynenko

The problem of determining the main parameters of light nuclei from precision atomic spectroscopy is considered. Within the framework of the quasipotential method in quantum electrodynamics, the energy interval [Formula: see text] in muonic ions of lithium, beryllium and boron is calculated. Corrections of orders [Formula: see text], which are determined by relativistic effects, effects of vacuum polarization, nuclear structure and recoil, as well as combined corrections, including the above, are taken into account. Nuclear structure effects are expressed in terms of the nuclear charge radius in the case of one-photon interaction and the electromagnetic form factors of nuclei in the case of two-photon interaction. The obtained numerical values for the [Formula: see text] interval can be used for comparison with future experimental data and for a more accurate determination of the nucleus charge radii.


2020 ◽  
Vol 18 (46) ◽  
pp. 29-38
Author(s):  
Ghufran Mahdy Sallh ◽  
Ahmed Najim Abdullah

The nuclear structure included the matter, proton and neutron densities of the ground state, the nuclear root-mean-square (rms) radii and elastic form factors of one neutron 23O and 24F halo nuclei have been studied by the two body model of  within the harmonic oscillator (HO) and Woods-Saxon (WS) radial wave functions. The calculated results show that the two body model within the HO and WS radial wave functions succeed in reproducing neutron halo in these exotic nuclei. Moreover, the Glauber model at high energy has been used to calculated the rms radii and reaction cross section of these nuclei.


2019 ◽  
Vol 13 (27) ◽  
pp. 1-13
Author(s):  
Sheimaa T. Aluboodi

In this paper the nuclear structure of some of Si-isotopes namely, 28,32,36,40Si have been studied by calculating the static ground state properties of these isotopes such as charge, proton, neutron and mass densities together with their associated rms radii, neutron skin thicknesses, binding energies, and charge form factors. In performing these investigations, the Skyrme-Hartree-Fock method has been used with different parameterizations; SkM*, S1, S3, SkM, and SkX. The effects of these different parameterizations on the above mentioned properties of the selected isotopes have also been studied so as to specify which of these parameterizations achieves the best agreement between calculated and experimental data. It can be deduced from this study that it is SkX parameterization that achieves such agreement. Furthermore, comparison between the theoretical and experimental results of charge form factors has been performed.


2019 ◽  
Vol 65 (2) ◽  
pp. 159
Author(s):  
Fouad A. Majeed ◽  
And Sarah M. Obaid

Shell model calculations based on large basis has been conducted to study the nuclear structure of $^{20}Ne$, $^{22}Ne$ and $^{24}Mg$ nuclei. The energy levels, inelastic electron scattering form factors and transition probabilities are discussed by considering the contribution of  configurations with high-energy beyond the model space of sd-shell model space which is denoted as the core polarization (CP) effects.~The Core polarization is considered by taking the excitations of nucleus from the $1s$ and $1p$ core orbits and also from the valence $2s$ $1d$ shell orbit in to higher shells with $4\hbar\omega$. The effective interactions $USDA$ and $USDB$ are employed with $sd$ shell model space to perform the calculation and the core polarization are calculated with $MSDI$ as residual interaction.~The calculated energy level schemes,  form factors and transition probabilities were compared with the corresponding experimental data. The effect of core polarization is found very important for the calculation of $B(C2)$, $B(C4)$ and form factors, and gives excellent results in comparison with the experimental data without including any adjustable parameters.


1971 ◽  
Vol 32 (C5) ◽  
pp. C5b-269-C5b-270
Author(s):  
Kuniharu Kubodera
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document