scholarly journals Symplectic Basis for Constructing Intrinsic Wave Functions of the Three-Body System

1991 ◽  
Vol 85 (2) ◽  
pp. 257-270
Author(s):  
K. Kato ◽  
G. F. Filippov
Author(s):  
Lucas Happ ◽  
Matthias Zimmermann ◽  
Maxim A Efremov

Abstract We study a heavy-heavy-light three-body system confined to one space dimension in the regime where an excited state in the heavy-light subsystems becomes weakly bound. The associated two-body system is characterized by (i) the structure of the weakly-bound excited heavy-light state and (ii) the presence of deeply-bound heavy-light states. The consequences of these aspects for the behavior of the three-body system are analyzed. We find a strong indication for universal behavior of both three-body binding energies and wave functions for different weakly-bound excited states in the heavy-light subsystems.


2018 ◽  
Vol 181 ◽  
pp. 01013 ◽  
Author(s):  
Reinhard Alkofer ◽  
Christian S. Fischer ◽  
Hèlios Sanchis-Alepuz

The covariant Faddeev approach which describes baryons as relativistic three-quark bound states and is based on the Dyson-Schwinger and Bethe-Salpeter equations of QCD is briefly reviewed. All elements, including especially the baryons’ three-body-wave-functions, the quark propagators and the dressed quark-photon vertex, are calculated from a well-established approximation for the quark-gluon interaction. Selected previous results of this approach for the spectrum and elastic electromagnetic form factors of ground-state baryons and resonances are reported. The main focus of this talk is a presentation and discussion of results from a recent investigation of the electromagnetic transition form factors between ground-state octet and decuplet baryons as well as the octet-only Σ0 to Λ transition.


1993 ◽  
Vol 87 (3) ◽  
pp. 195-213 ◽  
Author(s):  
Vladimir M. Azriel ◽  
Lev Yu. Rusin ◽  
Mikhail B. Sevryuk

2021 ◽  
Author(s):  
Yuji Naruse

<div> <p>Cyclic orbital interaction, in which a series of orbitals interact with each other so as to make a monocyclic system, affords stabilization if the requirements of orbital phase continuity are satisfied. Initially, these requirements were derived from the consideration of a three-body system. Here I propose that these requirements can be easily derived by considering FMO theory. </p> </div>


Author(s):  
Jaume Carbonell ◽  
Emiko Hiyama ◽  
Rimantas Lazauskas ◽  
Francisco Miguel Marqués

We consider the evolution of the neutron-nucleus scattering length for the lightest nuclei. We show that, when increasing the number of neutrons in the target nucleus, the strong Pauli repulsion is weakened and the balance with the attractive nucleon-nucleon interaction results into a resonant virtual state in ^{18}18B. We describe ^{19}19B in terms of a ^{17}17B-nn-nn three-body system where the two-body subsystems ^{17}17B-nn and nn-nn are unbound (virtual) states close to the unitary limit. The energy of ^{19}19B ground state is well reproduced and two low-lying resonances are predicted. Their eventual link with the Efimov physics is discussed. This model can be extended to describe the recently discovered resonant states in ^{20,21}20,21B.


1999 ◽  
Vol 8 (5) ◽  
pp. 1010-1022 ◽  
Author(s):  
Donna K. Hendrix ◽  
Teri E. Klein ◽  
Irwin D. Kuntz

2018 ◽  
Vol 20 (4) ◽  
pp. 2872-2879
Author(s):  
Eyad H. Al-Samra ◽  
Nicholas J. B. Green

This study investigates the problem of diffusion kinetics in a three-body system, motivated by the theory of radiation chemical kinetics.


Sign in / Sign up

Export Citation Format

Share Document