scholarly journals Quasi Long Range Ordered Ground-State of the Random Field XY Model

2005 ◽  
Vol 157 ◽  
pp. 136-138 ◽  
Author(s):  
Mitsuhiro Itakura ◽  
Chuichi Arakawa
Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1241
Author(s):  
Ming-Hsi Lee ◽  
Yenming J. Chen

This paper proposes to apply a Markov chain random field conditioning method with a hybrid machine learning method to provide long-range precipitation predictions under increasingly extreme weather conditions. Existing precipitation models are limited in time-span, and long-range simulations cannot predict rainfall distribution for a specific year. This paper proposes a hybrid (ensemble) learning method to perform forecasting on a multi-scaled, conditioned functional time series over a sparse l1 space. Therefore, on the basis of this method, a long-range prediction algorithm is developed for applications, such as agriculture or construction works. Our findings show that the conditioning method and multi-scale decomposition in the parse space l1 are proved useful in resisting statistical variation due to increasingly extreme weather conditions. Because the predictions are year-specific, we verify our prediction accuracy for the year we are interested in, but not for other years.


1955 ◽  
Vol 33 (11) ◽  
pp. 668-678 ◽  
Author(s):  
F. R. Britton ◽  
D. T. W. Bean

Long range forces between two hydrogen molecules are calculated by using methods developed by Massey and Buckingham. Several terms omitted by them and a corrected numerical factor greatly change results for the van der Waals energy but do not affect their results for the static quadrupole–quadrupole energy. By using seven approximate ground state H2 wave functions information is obtained regarding the dependence of the van der Waals energy on the choice of wave function. The value of this energy averaged over all orientations of the molecular axes is found to be approximately −11.0 R−6 atomic units, a result in close agreement with semiempirical values.


1997 ◽  
Vol 11 (11) ◽  
pp. 1311-1335 ◽  
Author(s):  
Kristel Michielsen ◽  
Hans De Raedt

We present stochastic diagonalization results for the ground-state energy and the largest eigenvalue of the two-fermion density matrix of the BCS reduced Hamiltonian, the Hubbard model, and the Hubbard model with correlated hopping. The system-size dependence of this eigenvalue is used to study the existence of Off-Diagonal Long-Range Order in these models. We show that the model with correlated hopping and repulsive on-site interaction can exhibit Off-Diagonal Long-Range Order. Analytical results for some special limiting cases indicate that Off-Diagonal Long-Range Order not always implies superconductivity.


2019 ◽  
Author(s):  
Ελένη Αζά

The discovery of materials with coexisting magnetic and ferroelectric orders, has revived theinterest of condensed matter physics and materials’ science communities maintaining the greatpromise of such fundamental mechanisms in devising applications ranging from portablemagnetoelectric (ME) sensors and memories to radar technologies. The present PhD thesis is a study in the field of strongly correlated systems where coupled properties arise from the interplay of charge and spin degrees of freedom over lattice topologies enabling competing magnetic interactions and therefore emergence of coupling of electric and magnetic order. Non-perovskite, two-dimensional (2D) Na-Mn-O oxides are revisited in scope of this in both polycrystalline and large single crystal forms. Among Na-deficient polymorphs, hexagonal α-Na0.7MnO2 (single crystals) has been investigated for the first time as a playground of competing interactions due to mixed Mnvalence (Mn4+ / Mn3+), fostered by Na vacancies in the structure. The competition of FM (Mn3+-Mn4+) and AFM (Mn3+ -Mn3+) interactions is believed to be the origin of the magnetic instability leading to a glassy ground state leaving also their footprint in the dielectric permittivity measurements. Competing FM and AFΜ interactions are also investigated as the origin of the anisotropic magnetic properties witnessed in a-NaxMnO2 (x= 0.96) single crystals. Neutron single crystal experiments show a well-established AFM long range order which vanishes above 26 K whilea coexistent canted antiferromagnetic state persists up to 45 K. In both alpha powders and aNa0.96MnO2 single crystals, the dielectric permittivity suggests the onset of the commensuratemagnetic long range order (T~ 45 K) which in the case of the powders allows a magnetocapacitance effect. Compositional modulations in β-NaMnO2, which are depicted as an intergrowth of α- and βlike oxygen coordinations, are found to trigger a proper-screw magnetic ground state which evolves into collinear commensurate AFM state. Features in the dielectric permittivity coincide with the onset of the commensurate AFM order giving away also the contribution of the α- structural domains. Further understanding of the mechanisms that dictate the relief of frustrated interactions and establishment of magnetic order together with the role of structural complexity in the form of domains or domain-walls is a direction that warrants further exploration as it will help us to resolve whether other coupled electron degrees of freedom are likely to be generated in this family of oxides.


Sign in / Sign up

Export Citation Format

Share Document