The Strathspey Field, Block 3/4a, UK North Sea

2003 ◽  
Vol 20 (1) ◽  
pp. 355-368
Author(s):  
G. Maxwell ◽  
R. E. Stanley ◽  
D. C. White

AbstractThe Strathspey Field was the first sub-sea development in the North Sea to be tied back to a third party operator, the Ninian Field now operated by Canadian Natural Resources (CNR). The field was discovered in 1975 by well 3/4-4 and lies wholly within Block 3/4a. The field is a tilted fault block, unconformity trap and consists of two separate reservoirs, a volatile oil and a gas condensate reservoir: the Middle Jurassic, Brent Group and the Lower Jurassic/Upper Triassic, Banks Group respectively. Two 3D seismic surveys cover the field, the most recent being a Vertical Cable Seismic survey recorded in 1996.The Banks Group reservoir is produced under depletion drive by five wells and the Brent Group reservoir by water flooding with 3 water injectors and 6 producing wells. In place volumes are 290 BCF and 90MMSTB for the Banks Group and 120MMSTR in the Brent Group Reservoir. Ultimate recoveries are estimated to be 230BSCF, 22MMBBL and 70MMSTB, 88 BSCF respectively. Oil export is via the Ninian pipeline system to Sullom Voe, while gas export is through the Far North Liquids and Gas System (FLAGS) pipeline system to St Fergus.]

2018 ◽  
Vol 156 (07) ◽  
pp. 1265-1284
Author(s):  
EVA VAN DER VOET ◽  
LEONORA HEIJNEN ◽  
JOHN J. G. REIJMER

AbstractIn contrast to the Norwegian and Danish sectors, where significant hydrocarbon reserves were found in chalk reservoirs, limited studies exist analysing the chalk evolution in the Dutch part of the North Sea. To provide a better understanding of this evolution, a tectono-sedimentary study of the Late Cretaceous to Early Palaeogene Chalk Group in the northern Dutch North Sea was performed, facilitated by a relatively new 3D seismic survey. Integrating seismic and biostratigraphic well data, seven chronostratigraphic units were mapped, allowing a reconstruction of intra-chalk geological events.The southwestward thickening of the Turonian sequence is interpreted to result from tilting, and the absence of Coniacian and Santonian sediments in the western part of the study area is probably the result of non-deposition. Seismic truncations show evidence of a widespread inversion phase, the timing of which differs between the structural elements. It started at the end of the Campanian followed by a second pulse during the Maastrichtian, a new finding not reported before. After subsidence during the Maastrichtian and Danian, renewed inversion and erosion occurred at the end of the Danian. Halokinesis processes resulted in thickness variations of chalk units of different ages.In summary, variations in sedimentation patterns in the northern Dutch North Sea relate to the Sub-Hercynian inversion phase during the Campanian and Maastrichtian, the Laramide inversion phase at the end of the Danian, and halokinesis processes. Additionally, the Late Cretaceous sea floor was characterized by erosion through contour bottom currents at different scales and resedimentation by slope failures.


1991 ◽  
Author(s):  
Gary Hampson ◽  
Terje Hansen ◽  
H. Jakubowicz ◽  
John V. Kingston

Author(s):  
P. Whomersley ◽  
G.B. Picken

Inspection videos of four offshore platforms in the central and northern North Sea were used to study the development of fouling communities on clamps and guides of oil export risers over an 11-y period (1989–2000). Results from multivariate analyses (multi-dimensional scaling and analysis of similarities) indicated that distinct assemblages developed in different geographical locations. These differences were mainly due to the protracted development of theMetridium senile(Cnidaria: Actinaria) zone on the northern sector platforms. The vertical zonation of fouling organisms was similar on all installations, although the water depth at platform locations varied from 80 to 169 m, indicating that fouling organisms display a wide bathymetric tolerance. This study has highlighted the value of long-term data present in operational inspection videos for the study of fouling communities.


2021 ◽  
Author(s):  
Johnathon Osmond ◽  
Mark Mulrooney ◽  
Nora Holden ◽  
Elin Skurtveit ◽  
Jan Inge Faleide ◽  
...  

The maturation of geological CCS along the Norwegian Continental Shelf is ongoing in the Norwegian North Sea, however, more storage sites are needed to reach climate mitigation goals by 2050. In order to augment the Aurora site and expand CO2 storage in the northern Horda Platform, regional traps and seals must be assessed to better understand the area’s potential. Here, we leverage wellbore and seismic data to map storage aquifers, identify structural traps, and assess possible top and fault seals associated with Lower and Upper Jurassic storage complexes in four major fault blocks. With respect to trap and seal, our results maintain that both prospective intervals represent viable CO2 storage options in various locations of each fault block. Mapping, modeling, and formation pressure analyses indicate that top seals are present across the entire study area, and are sufficiently thick over the majority of structural traps. Across-fault juxtaposition seals are abundant, but dominate the Upper Jurassic storage complexes. Lower Jurassic aquifers, however, are often upthrown against Upper Jurassic aquifers, but apparent across fault pressure differentials and moderate to high shale gouge ratio values correlate, suggesting fault rock membrane seal presence. Zones of aquifer self-juxtaposition, however, are likely areas of poor seal along faults. Overall, our results provide added support that the northern Horda Platform represents a promising location for expanding CO2 storage in the North Sea, carrying the potential to become a future injection hub for CCS in northern Europe.


Geosciences ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 270 ◽  
Author(s):  
Vincent Gaffney ◽  
Simon Fitch ◽  
Martin Bates ◽  
Roselyn L. Ware ◽  
Tim Kinnaird ◽  
...  

Doggerland was a landmass occupying an area currently covered by the North Sea until marine inundation took place during the mid-Holocene, ultimately separating the British landmass from the rest of Europe. The Storegga Event, which triggered a tsunami reflected in sediment deposits in the northern North Sea, northeast coastlines of the British Isles and across the North Atlantic, was a major event during this transgressive phase. The spatial extent of the Storegga tsunami however remains unconfirmed as, to date, no direct evidence for the event has been recovered from the southern North Sea. We present evidence of a tsunami deposit in the southern North Sea at the head of a palaeo-river system that has been identified using seismic survey. The evidence, based on lithostratigraphy, geochemical signatures, macro and microfossils and sedimentary ancient DNA (sedaDNA), supported by optical stimulated luminescence (OSL) and radiocarbon dating, suggests that these deposits were a result of the tsunami. Seismic identification of this stratum and analysis of adjacent cores showed diminished traces of the tsunami which was largely removed by subsequent erosional processes. Our results confirm previous modelling of the impact of the tsunami within this area of the southern North Sea, and also indicate that these effects were temporary, localized, and mitigated by the dense woodland and topography of the area. We conclude that clear physical remnants of the wave in these areas are likely to be restricted to now buried, palaeo-inland basins and incised river valley systems.


1991 ◽  
Vol 14 (1) ◽  
pp. 33-42 ◽  
Author(s):  
C. A. Knutson ◽  
I. C. Munro

AbstractThe Beryl Field, the sixth largest oil field in the UK sector of the North Sea, is located within Block 9/13 in the west-central part of the Viking Graben. The block was awarded in 1971 to a Mobil operated partnership and the 9/13-1 discovery well was drilled in 1972. The Beryl A platform was emplaced in 1975 and the Beryl B platform in 1983. To date, ninety-five wells have been drilled in the field, and drilling activity is anticipated into the mid-1990s.Commercial hydrocarbons occur in sandstone reservoirs ranging in age from Upper Triassic to Upper Jurassic. Structurally, the field consists of a NNE orientated horst in the Beryl A area and westward tilted fault blocks in the Beryl B area. The area is highly faulted and complicated by two major and four minor unconformities. The seal is provided by Upper Jurassic shales and Upper Cretaceous marls.There are three prospective sedimentary sections in the Beryl Field ranked in importance as follows: the Middle Jurassic coastal deltaic sediments, the Upper Triassic to Lower Jurassic continental and marine sediments, and the Upper Jurassic turbidites. The total ultimate recovery of the field is about 800 MMBBL oil and 1.6 TCF gas. As of December 1989, the field has produced nearly 430 MMBBL oil (primarily from the Middle Jurassic Beryl Formation), or about 50% of the ultimate recovery. Gas sales are scheduled to begin in the early 1990s. Oil and gas production is forecast until licence expiration in 2018.The Beryl Fields is located 215 miles northeast of Aberdeen, about 7 miles from the United Kingdom-Norwegian boundary. The field lies within Block 9/13 and covers and area of approximately 12 000 acres in water depths ranging from 350-400 ft. Block 9/13 contains several hydrocarbon-bearing structures, of which the Beryl Fields is the largest (Fig. 1). The field is subdivided into two producing areas: the Beryl Alpha area which includes the initial discovery well, and the Beryl Bravo area located to the north. The estimated of oil originally in place is 1400 MMBBL for Beryl A and 700 MMBBL for Beryl B. The fiel has combined gas in place of 2.8 TCF, consisting primarily of solution gas. Hydrocarbon accumulations occur in six reservoir horizons ranging in age from Upper Triassic to Upper Jurassic. The Middle Jurassic (Bathonian to Callovian) age Beryl Formation is the main reservoir unit and contains 78% of the total ultimate recovery.The field was named after Beryl Solomon, the wife of Charles Solomon, who was president of Mobil Europe in 1972 when the field was discovered. The satellite fields in Block 9/13 (Nevis, Ness and Linnhe) are named after Scottish lochs.


2010 ◽  
Vol 89 (2) ◽  
pp. 169-172 ◽  
Author(s):  
J.W.M. Jagt ◽  
J.W.F. Reumer

AbstractDuring the 2007 ‘Kor en Bot’ collecting trip across the Oosterschelde (province of Zeeland, southwest Netherlands), on board trawler cutter ZZ10, a stem fragment of a fossil isocrinid was recognised amongst the contents of the nets pulled on deck. This specimen is here interpreted to be of Early Jurassic age and assignable to the genus Isocrinus. However, because only internodals are preserved in this pluricolumnal, specific identification cannot be but approximate (Isocrinus (Chladocrinus) cf. tuberculatus). In the absence of any outcrop of Jurassic deposits in Zeeland and adjacent Dutch and Belgian territory, the most likely explanation is that this crinoid represents erratic material transported by precursors of the present-day River Maas (Meuse). Between the Langres Plateau and Sedan (northeast France), this river cuts through several occurrences of Lower Jurassic strata from which the present isocrinid might have originated. A less likely explanation is that it stems from boulders used for coastal reinforcement or from a Roman limestone votive altarpiece put up at the temple complex for the goddess Nehalennia, formerly present at Colijnsplaat, near Domburg (Noord-Beveland, Zeeland). Transportation from either northwest France or the southern or eastern United Kingdom, where there are coastal exposures of Jurassic strata, via the North Sea, is another option which, however, is also considered less feasible in view of the good state of preservation of the crinoid.


2000 ◽  
Author(s):  
Ola Eiken ◽  
Morten Svendsen ◽  
Torstein Navrestad ◽  
Erik Haavarstein ◽  
Leif Larsen

Sign in / Sign up

Export Citation Format

Share Document