Hydrocarbon source rocks, thermal maturity and burial history of the Orcadian Basin, Scotland

1988 ◽  
Vol 40 (1) ◽  
pp. 203-203 ◽  
Author(s):  
S. J. Hillier ◽  
J. E. A. Marshall
2018 ◽  
Vol 36 (5) ◽  
pp. 1229-1244
Author(s):  
Xiao-Rong Qu ◽  
Yan-Ming Zhu ◽  
Wu Li ◽  
Xin Tang ◽  
Han Zhang

The Huanghua Depression is located in the north-centre of Bohai Bay Basin, which is a rift basin developed in the Mesozoic over the basement of the Huabei Platform, China. Permo-Carboniferous source rocks were formed in the Huanghua Depression, which has experienced multiple complicated tectonic alterations with inhomogeneous uplift, deformation, buried depth and magma effect. As a result, the hydrocarbon generation evolution of Permo-Carboniferous source rocks was characterized by discontinuity and grading. On the basis of a detailed study on tectonic-burial history, the paper worked on the burial history, heating history and hydrocarbon generation history of Permo-Carboniferous source rocks in the Huanghua Depression combined with apatite fission track testing and fluid inclusion analyses using the EASY% Ro numerical simulation. The results revealed that their maturity evolved in stages with multiple hydrocarbon generations. In this paper, we clarified the tectonic episode, the strength of hydrocarbon generation and the time–spatial distribution of hydrocarbon regeneration. Finally, an important conclusion was made that the hydrocarbon regeneration of Permo-Carboniferous source rocks occurred in the Late Cenozoic and the subordinate depressions were brought forward as advantage zones for the depth exploration of Permo-Carboniferous oil and gas in the middle-northern part of the Huanghua Depression, Bohai Bay Basin, China.


2017 ◽  
Vol 113 ◽  
pp. 254-261 ◽  
Author(s):  
Sedat İnan ◽  
Sebastian Henderson ◽  
Salman Qathami

Author(s):  
P.J. Lee

A basin or subsurface study, which is the first step in petroleum resource evaluation, requires the following types of data: • Reservoir data—pool area, net pay, porosity, water saturation, oil or gas formation volume factor, in-place volume, recoverable oil volume or marketable gas volume, temperature, pressure, density, recovery factors, gas composition, discovery date, and other parameters (refer to Lee et al., 1999, Section 3.1.2). • Well data—surface and bottom well locations; spud and completion dates; well elevation; history of status; formation drill and true depths; lithology; drill stem tests; core, gas, and fluid analyses; and mechanical logs. • Geochemical data—types of source rocks, burial history, and maturation history. • Geophysical data—prospect maps and seismic sections. Well data are essential when we construct structural contour, isopach, lithofacies, porosity, and other types of maps. Geophysical data assist us when we compile number-of-prospect distributions and they provide information for risk analysis.


1995 ◽  
Vol 35 (1) ◽  
pp. 307 ◽  
Author(s):  
R. Moussavi-Harami ◽  
D. I. Gravestock

The intracratonic Officer Basin of central Australia was formed during the Neoproterozoic, approximately 820 m.y. ago. The eastern third of the Officer Basin is in South Australia and contains nine unconformity-bounded sequence sets (super-sequences), from Neoproterozoic to Tertiary in age. Burial history is interpreted from a series of diagrams generated from well data in structurally diverse settings. These enable comparison between the stable shelf and co-existing deep troughs. During the Neoproterozoic, subsidence in the north (Munyarai Trough) was much higher than in either the south (Giles area) or northeast (Manya Trough). This subsidence was related to tectonic as well as sediment loading. During the Cambrian, subsidence was much higher in the northeast and was probably due to tectonic and sediment loading (carbonates over siliciclastics). During the Early Ordovician, subsidence in the north created more accommodation space for the last marine transgression from the northeast. The high subsidence rate of Late Devonian rocks in the Munyarai Trough was probably related to rapid deposition of fine-grained siliciclastic sediments prior to the Alice Springs Orogeny. Rates of subsidence were very low during the Early Permian and Late Jurassic to Early Cretaceous, probably due to sediment loading rather than tectonic sinking. Potential Neoproterozoic source rocks were buried enough to reach initial maturity at the time of the terminal Proterozoic Petermann Ranges Orogeny. Early Cambrian potential source rocks in the Manya Trough were initially mature prior to the Delamerian Orogeny (Middle Cambrian) and fully mature on the Murnaroo Platform at the culmination of the Alice Springs Orogeny (Devonian).


2012 ◽  
Vol 63 (4) ◽  
pp. 335-342 ◽  
Author(s):  
Paweł Kosakowski ◽  
Magdalena Wróbel

Burial history, thermal history and hydrocarbon generation modelling of the Jurassic source rocks in the basement of the Polish Carpathian Foredeep and Outer Carpathians (SE Poland)Burial history, thermal maturity, and timing of hydrocarbon generation were modelled for the Jurassic source rocks in the basement of the Carpathian Foredeep and marginal part of the Outer Carpathians. The area of investigation was bounded to the west by Kraków, to the east by Rzeszów. The modelling was carried out in profiles of wells: Będzienica 2, Dębica 10K, Góra Ropczycka 1K, Goleszów 5, Nawsie 1, Pławowice E1 and Pilzno 40. The organic matter, containing gas-prone Type III kerogen with an admixture of Type II kerogen, is immature or at most, early mature to 0.7 % in the vitrinite reflectance scale. The highest thermal maturity is recorded in the south-eastern part of the study area, where the Jurassic strata are buried deeper. The thermal modelling showed that the obtained organic matter maturity in the initial phase of the "oil window" is connected with the stage of the Carpathian overthrusting. The numerical modelling indicated that the onset of hydrocarbon generation from the Middle Jurassic source rocks was also connected with the Carpathian thrust belt. The peak of hydrocarbon generation took place in the orogenic stage of the overthrusting. The amount of generated hydrocarbons is generally small, which is a consequence of the low maturity and low transformation degree of kerogen. The generated hydrocarbons were not expelled from their source rock. An analysis of maturity distribution and transformation degree of the Jurassic organic matter shows that the best conditions for hydrocarbon generation occurred most probably in areas deeply buried under the Outer Carpathians. It is most probable that the "generation kitchen" should be searched for there.


Sign in / Sign up

Export Citation Format

Share Document