scholarly journals Real-time spatial relationship based 3D scene composition of unknown objects

Author(s):  
Lee Seversky ◽  
Lijun Yin
2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii461-iii461
Author(s):  
Andrea Carai ◽  
Angela Mastronuzzi ◽  
Giovanna Stefania Colafati ◽  
Paul Voicu ◽  
Nicola Onorini ◽  
...  

Abstract Tridimensional (3D) rendering of volumetric neuroimaging is increasingly been used to assist surgical management of brain tumors. New technologies allowing immersive virtual reality (VR) visualization of obtained models offer the opportunity to appreciate neuroanatomical details and spatial relationship between the tumor and normal neuroanatomical structures to a level never seen before. We present our preliminary experience with the Surgical Theatre, a commercially available 3D VR system, in 60 consecutive neurosurgical oncology cases. 3D models were developed from volumetric CT scans and MR standard and advanced sequences. The system allows the loading of 6 different layers at the same time, with the possibility to modulate opacity and threshold in real time. Use of the 3D VR was used during preoperative planning allowing a better definition of surgical strategy. A tailored craniotomy and brain dissection can be simulated in advanced and precisely performed in the OR, connecting the system to intraoperative neuronavigation. Smaller blood vessels are generally not included in the 3D rendering, however, real-time intraoperative threshold modulation of the 3D model assisted in their identification improving surgical confidence and safety during the procedure. VR was also used offline, both before and after surgery, in the setting of case discussion within the neurosurgical team and during MDT discussion. Finally, 3D VR was used during informed consent, improving communication with families and young patients. 3D VR allows to tailor surgical strategies to the single patient, contributing to procedural safety and efficacy and to the global improvement of neurosurgical oncology care.


Author(s):  
Gaurav Chaurasia ◽  
Arthur Nieuwoudt ◽  
Alexandru-Eugen Ichim ◽  
Richard Szeliski ◽  
Alexander Sorkine-Hornung

We present an end-to-end system for real-time environment capture, 3D reconstruction, and stereoscopic view synthesis on a mobile VR headset. Our solution allows the user to use the cameras on their VR headset as their eyes to see and interact with the real world while still wearing their headset, a feature often referred to as Passthrough. The central challenge when building such a system is the choice and implementation of algorithms under the strict compute, power, and performance constraints imposed by the target user experience and mobile platform. A key contribution of this paper is a complete description of a corresponding system that performs temporally stable passthrough rendering at 72 Hz with only 200 mW power consumption on a mobile Snapdragon 835 platform. Our algorithmic contributions for enabling this performance include the computation of a coarse 3D scene proxy on the embedded video encoding hardware, followed by a depth densification and filtering step, and finally stereoscopic texturing and spatio-temporal up-sampling. We provide a detailed discussion and evaluation of the challenges we encountered, as well as algorithm and performance trade-offs in terms of compute and resulting passthrough quality.;AB@The described system is available to users as the Passthrough+ feature on Oculus Quest. We believe that by publishing the underlying system and methods, we provide valuable insights to the community on how to design and implement real-time environment sensing and rendering on heavily resource constrained hardware.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yuezhou Wu ◽  
Changjiang Liu ◽  
Shiyong Lan ◽  
Menglong Yang

Road monitoring helps to control the regional traffic situation so as to adjust the traffic flow. Real-time panorama is conducive to timely treat traffic accidents and to greatly improve traffic capacity. This paper designs a 3D road scene monitoring framework based on real-time panorama. The system is the combination of large scale panorama, satellite map textures, and 3D scene model, in which users can ramble freely. This paper has the following contributions. Firstly, land-points were extracted followed by motion detection, then comotion algorithm was applied to land-points from adjacent cameras, and homography matrix was constructed. Secondly, reference camera was chosen and transformed to overhead viewpoint; subsequently multiviews were morphed to the same viewpoint and stitched to panorama. Finally, the registration based on high-precision GPS information between 2D road panorama and 3D scene model was also proposed. The proposed framework has been successfully applied to a large road intersection monitoring. Experimental results are furnished at the end of the paper.


2020 ◽  
Vol 20 (10) ◽  
pp. 5597-5605 ◽  
Author(s):  
Changdi Li ◽  
Lei Yu ◽  
Shumin Fei

2001 ◽  
Vol 01 (01) ◽  
pp. 45-61 ◽  
Author(s):  
JIN LI ◽  
HEUNG-YEUNG SHUM ◽  
YA-QIN ZHANG

In image based rendering (IBR), a 3D scene is recorded through a set of photos which is then rendered to form novel views. Compression is essential to reduce the huge data amount of IBR. In this paper, we examine three categories of IBR compression algorithms: the block coder, the reference coder and the wavelet coder. We examine both the compression efficiency and the capability to render the compressed IBR bitstream in real-time. It is observed that the block coder consumes the least computation resource, however, its compression ratio is low. The reference coder achieves good compression ratio with reasonable computation complexity. The wavelet coder achieves the best compression ratio.


2005 ◽  
Vol 05 (02) ◽  
pp. 433-445 ◽  
Author(s):  
HYUNG W. KANG

This paper presents a novel scheme based on a hybrid NPR/IBMR approach, for providing non-photorealistic virtual environment navigation from images. As a preprocess, we first divide the background and the foreground components in the image and then construct a simple 3D scene model consisting of background model and foreground object models, together with the corresponding non-photorealistic texture maps. Thus, through interactive navigation at runtime, non-photorealistic walk-through images for novel viewpoints can be generated in real time. To reduce visual artifacts in the resulting animation, we propose an effective method for generating multiresolution and view-dependent non-photorealistic texture maps that preserve the stroke size and coherence across different viewing resolutions and angles.


2014 ◽  
Vol 596 ◽  
pp. 370-373
Author(s):  
Li Xu ◽  
Mao Zhen Liu

: The real-time rendering of 3D scene need excellent algorithm to support scene management. After considering the algorithm complexity and scene scale factors, combining the advantages of Bounding Volume Hierarchy (BVH) and rendering tree in scene management, this paper puts forward a kind of scene organize algorithm, to solve the problem of render states redundant calculation when using BVH technology to solve the problem of deformable collision detection, by choosing the appropriate strategy of Hierarchy Bounding Volume tree construction and optimizing rendering tree of the scene. Experiments prove the proposed algorithm can effectively improve the rendering efficiency of 3D scene, enhance the visual effect.


2021 ◽  
Author(s):  
Ajitanshu Vedrtnam ◽  
Santosh Kumar ◽  
Gonzalo Barluenga ◽  
Shashikant Chaturvedi

Abstract The present work aimed to develop an efficient way of capturing real-time crack propagation in concrete structures. The image processing was utilized for crack detection, while finite element modeling (FEM) and scanning electron microscopy (SEM) were used for quantitative and qualitative analysis of crack propagation. A green cement-based composite (CBC) containing saw dust was compared to a reference M20 grade concrete under compressive loading. Crack propagation during compression tests was captured using an 8-megapixel mobile phone camera. The randomly selected images showing crack initiation and propagation in CBCs were used to assess the crack capturing capability of a spectral analysis based algorithm. A measure of oriented energy was provided at crack edges to develop a similarity spatial relationship among the pairwise pixels. FE modelling was used for distress anticipation, by analyzing stresses during the compressive test in constituents of CBCs. SEM analyses were also done to evaluate cracked samples. It was found that FE modeling could predict the crack prone regions that can be used jointly with the image analysis algorithm, providing real-time inputs from the crack-prone areas. Green CBC were compared to reference concrete samples, showing reliable results. The replacement of OPC with wood dust reduced compression strength and produced a different fracture pattern regarding reference concrete. The results of the study can be used for distress anticipation and early crack detection of concrete structures for preventive support and management.


Sign in / Sign up

Export Citation Format

Share Document