Router microarchitecture and scalability of ring topology in on-chip networks

Author(s):  
John Kim ◽  
Hanjoon Kim
Keyword(s):  
Author(s):  
George Martin ◽  
Jim Harkin ◽  
Liam J. McDaid ◽  
John J. Wade ◽  
Junxiu Liu ◽  
...  

Author(s):  
Ng Yen Phing ◽  
M.N.Mohd Warip ◽  
Phaklen Ehkan ◽  
R Badlishah Ahmad ◽  
F.W. Zulkefli

<span>The size of the transistor has reached physical processor limitation in particular for traditional bus-based and point-to-point architecture in system-on-chip (SoC). Therefore, network-on-chip (NoC) was proposed as a solution. The performances required for the optimization of the NoC are low network latency, low power consumption, small area, and high throughput. However, recently the size of the NoC architecture has increased and the communication between cores to core become complicated. To overcome this disadvantages, topology plays an important role. In this paper, we reduce the number of the router in the 16 cores and 64 cores ring and mesh topologies by connected more numbers of node in each router. Result shows that reducing the number of the router in 64 cores ring topology outperforms the conventional topologies in term of area, power consumption, latency, and accepted packet rate. Reducing router in 64 cores ring topology decrease the average area, power consumption, latency, and increase the average accepted packet rate by 160.45%, 23.88%, 54.76%, and 223.88% over the 64 cores mesh, reducing router in mesh, ring, and cross-link mesh topologies.</span>


2018 ◽  
Vol E101.D (7) ◽  
pp. 1835-1842 ◽  
Author(s):  
Lijing ZHU ◽  
Kun WANG ◽  
Duan ZHOU ◽  
Liangkai LIU ◽  
Huaxi GU

2020 ◽  
Vol 477 (14) ◽  
pp. 2679-2696
Author(s):  
Riddhi Trivedi ◽  
Kalyani Barve

The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut–lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut–lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.


2016 ◽  
Vol 136 (6) ◽  
pp. 244-249
Author(s):  
Takahiro Watanabe ◽  
Fumihiro Sassa ◽  
Yoshitaka Yoshizumi ◽  
Hiroaki Suzuki

Sign in / Sign up

Export Citation Format

Share Document