Yield enhancement by robust application-specific mapping on Network-on-Chips

Author(s):  
A. Dutta Choudhury ◽  
G. Palermo ◽  
C. Silvano ◽  
V. Zaccaria
1989 ◽  
Vol 154 ◽  
Author(s):  
Y.S. Liu ◽  
H. S. Cole

AbstractThe interest in laser processing technology has increased significantly in recent years because of increasing demands for application-specific IC design and fabrication, yield enhancement, circuit restructuring, and prototyping; all of these benefit from an adaptive processing technique using direct energy for improvement of precision, resolution, process automation, and turnaround time. This paper reviews several laser-patterned metallization techniques developed for high-density multichip interconnection applications. Key material and process requirements for developing a viable laser-direct-write interconnect technique on polyimide are addressed.


2012 ◽  
Vol E95-C (4) ◽  
pp. 534-545 ◽  
Author(s):  
Wei ZHONG ◽  
Takeshi YOSHIMURA ◽  
Bei YU ◽  
Song CHEN ◽  
Sheqin DONG ◽  
...  

Author(s):  
D.S. Patrick ◽  
L.C. Wagner ◽  
P.T. Nguyen

Abstract Failure isolation and debug of CMOS integrated circuits over the past several years has become increasingly difficult to perform on standard failure analysis functional testers. Due to the increase in pin counts, clock speeds, increased complexity and the large number of power supply pins on current ICS, smaller and less equipped testers are often unable to test these newer devices. To reduce the time of analysis and improve the failure isolation capabilities for failing ICS, failure isolation is now performed using the same production testers used in product development, multiprobe and final test. With these production testers, the test hardware, program and pattern sets are already available and ready for use. By using a special interface that docks the production test head to failure isolation equipment such as the emission microscope, liquid crystal station and E-Beam prober, the analyst can quickly and easily isolate the faillure on an IC. This also enables engineers in design, product engineering and the waferfab yield enhancement groups to utilize this equipment to quickly solve critical design and yield issues. Significant cycle time savings have been achieved with the migration to this method of electrical stimulation for failure isolation.


Author(s):  
M.L. Anderson ◽  
P. Tangyunyong ◽  
T.A. Hill ◽  
C.Y. Nakakura ◽  
T.J. Headley ◽  
...  

Abstract By combining transmission electron microscopy (TEM) [1] with scanning capacitance microscopy (SCM) [2], it is possible to enhance our understanding of device failures. At Sandia, these complementary techniques have been utilized for failure analysis in new product development, process validation, and yield enhancement, providing unique information that cannot be obtained with other analytical tools. We have previously used these instruments to identify the root causes of several yield-limiting defects in CMOS device product lines [3]. In this paper, we describe in detail the use of these techniques to identify electrically active silicon dislocations in failed SRAMs and to study the underlying leakage mechanisms associated with these defects.


Sign in / Sign up

Export Citation Format

Share Document