Area-Selective Laser Processing Techniques for Multichip Interconnect

1989 ◽  
Vol 154 ◽  
Author(s):  
Y.S. Liu ◽  
H. S. Cole

AbstractThe interest in laser processing technology has increased significantly in recent years because of increasing demands for application-specific IC design and fabrication, yield enhancement, circuit restructuring, and prototyping; all of these benefit from an adaptive processing technique using direct energy for improvement of precision, resolution, process automation, and turnaround time. This paper reviews several laser-patterned metallization techniques developed for high-density multichip interconnection applications. Key material and process requirements for developing a viable laser-direct-write interconnect technique on polyimide are addressed.

2004 ◽  
Vol 850 ◽  
Author(s):  
Koji Sugioka ◽  
Ya Cheng ◽  
Katsumi Midorikawa

ABSTRACT3D microstructuring of photosensitive glass is demonstrated by femtosecond (fs) laser for lab-on-a-chip manufacture. True 3D hollow microstructures embedded in the glass are fabricated by the fs laser direct write followed by heat treatment and successive wet etching. A variety of microcomponents for a lab-on-a-chip device like a microfluidics, a microvalve, a microoptics, a microlaser, etc. are fabricated by using this technique. The fs laser direct write process is also applied for selective metallization of internal walls of the hollow microstructures embedded in the glass for electric control of movement of the micromechanical components in the lab-on-a-chip device.


1988 ◽  
Vol 129 ◽  
Author(s):  
Robert F. Miracky

ABSTRACTLaser direct-write processes are attractive complements to traditional methods of fabricating microelectronic circuitry. This paper is a summary of our work in applying such processes to high-density inter-chip interconnection modules, such as those using copper conductors on polyimide dielectric layers. We begin by discussing the requirements which laser processes must satisfy in order to be useful in this application. An analytical model of laser heating is then described, which aids in understanding the thermal problem of absorption of visible-wavelength laser light by polyimide. Calculations using this model are consistent with experimental observations. Finally, we focus on one laser processing technique: laser chemical vapor deposition. We describe a new process for laser chemical vapor deposition of tungsten on polyimide, which enables the formation of low resistance contacts (≈ 0.1 Ω) between the deposited tungsten films and pre-patterned nickel-coated copper conductors. Lines approximately 30 /m wide and 34 µm thick were deposited at a scan rate of 93 µm/s. From four-point resistance measurements of different lengths of deposited films, the tungsten film resistivity is estimated to be two to three times the bulk value.


1989 ◽  
Vol 158 ◽  
Author(s):  
Y.S. Liu ◽  
H. S. Cole

ABSTRACTThis paper reviews several laser-based area-selective processing techniques developed for high-density multichip interconnection applications. Key material and process requirements for the development of a viable laser-direct-write interconnect technique on polyimide are addressed.


2015 ◽  
Vol 135 (9) ◽  
pp. 1080-1084
Author(s):  
Yoshiki Nakata ◽  
Yoshiki Matsuba ◽  
Noriaki Miyanaga

2006 ◽  
Vol 29 (1) ◽  
pp. 184-189
Author(s):  
Chengping Zhang ◽  
R. Bartholomew ◽  
P.C. Karulkar

2015 ◽  
Vol 787 ◽  
pp. 513-517 ◽  
Author(s):  
R. Pachaiyappan ◽  
R. Gopinath ◽  
S. Gopalakannan

Silicon carbides is a composite ceramic material produced from inorganic non-metallic substances, formed from the molten mass which solidifies on cooling and simultaneously matured by the action of heat. It is used in various applications such as grinding wheels, filtration of gases and water, absorption, catalyst supports, concentrated solar powers, thermoelectric conversion etc. The modern usage of silicon carbide is fabricated as a heat exchanger for high temperature applications. Leaving behind steel and aluminium, silicon carbide has an excellent temperature withstanding capability of 1425°C. It is resistant to corrosion and chemical erosion. Modern fusion reactors, Stirling cycle based gas turbines, evaporators in evaporative cooling system for air condition and generator in LiBr/H2O absorption chillers for air conditioning those systems heat transfer rate can be improved by replacing a present heat exchanger with silicon carbide heat exchanger. This review presents a detailed discussion about processing technique of such a silicon carbide. Modern known processing techniques are partial sintering, direct foaming, replica, sacrificial template and bonding techniques. The full potential of these materials can be achieved when properties are directed over specified application. While eyeing over full potential it is highly dependent on processing techniques.


2002 ◽  
Vol 18 (5) ◽  
pp. 1126-1129 ◽  
Author(s):  
B.R. Ringeisen ◽  
P.K. Wu ◽  
H. Kim ◽  
A. Pique ◽  
R.Y.C. Auyeung ◽  
...  

2004 ◽  
Vol 79 (4-6) ◽  
pp. 783-786 ◽  
Author(s):  
A. Piqué ◽  
C.B. Arnold ◽  
H. Kim ◽  
M. Ollinger ◽  
T.E. Sutto

Sign in / Sign up

Export Citation Format

Share Document