A machine learning approach to college drinking prediction and risk factor identification

2013 ◽  
Vol 4 (4) ◽  
pp. 1-24 ◽  
Author(s):  
Jinbo Bi ◽  
Jiangwen Sun ◽  
Yu Wu ◽  
Howard Tennen ◽  
Stephen Armeli
2019 ◽  
Vol 9 (24) ◽  
pp. 5550
Author(s):  
Antonieta Martínez-Velasco ◽  
Lourdes Martínez-Villaseñor ◽  
Luis Miralles-Pechuán ◽  
Andric C. Perez-Ortiz ◽  
Juan C. Zenteno ◽  
...  

Age-related macular degeneration (AMD) is the leading cause of visual dysfunction and irreversible blindness in developed countries and a rising cause in underdeveloped countries. There is a current debate on whether or not cataracts are significant risk factors for AMD development. In particular, research regarding this association is so far inconclusive. For this reason, we aimed to employ here a machine-learning approach to analyze the relevance and importance of cataracts as a risk factor for AMD in a large cohort of Hispanics from Mexico. We conducted a nested case control study of 119 cataract cases and 137 healthy unmatched controls focusing on clinical data from electronic medical records. Additionally, we studied two single nucleotide polymorphisms in the CFH gene previously associated with the disease in various populations as positive control for our method. We next determined the most relevant variables and found the bivariate association between cataracts and AMD. Later, we used supervised machine-learning methods to replicate these findings without bias. To improve the interpretability, we detected the five most relevant features and displayed them using a bar graph and a rule-based tree. Our findings suggest that bilateral cataracts are not a significant risk factor for AMD development among Hispanics from Mexico.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2020 ◽  
Author(s):  
Clifford A. Brown ◽  
Jonny Dowdall ◽  
Brian Whiteaker ◽  
Lauren McIntyre

2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document