Context-sensitive data-driven crowd simulation

Author(s):  
Cory D. Boatright ◽  
Mubbasir Kapadia ◽  
Jennie M. Shapira ◽  
Norman I. Badler
Author(s):  
Johannes Späth

AbstractA precise static data-flow analysis transforms the program into a context-sensitive and field-sensitive approximation of the program. It is challenging to design an analysis of this precision efficiently due to the fact that the analysis is undecidable per se. Synchronized pushdown systems (SPDS) present a highly precise approximation of context-sensitive and field-sensitive data-flow analysis. This chapter presents some data-flow analyses that SPDS can be used for. Further on, this chapter summarizes two other contributions of the thesis “Synchronized Pushdown System for Pointer and Data-Flow Analysis” called Boomerang and IDEal. Boomerang is a demand-driven pointer analysis that builds on top of SPDS and minimizes the highly computational effort of a whole-program pointer analysis by restricting the computation to the minimal program slice necessary for an individual query. IDEal is a generic and efficient framework for data-flow analyses, e.g., typestate analysis. IDEal resolves pointer relations automatically and efficiently by the help of Boomerang. This reduces the burden of implementing pointer relations into an analysis. Further on, IDEal performs strong updates, which makes the analysis sound and precise.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Anand Paul ◽  
Hameed Pinjari ◽  
Won-Hwa Hong ◽  
Hyun Cheol Seo ◽  
Seungmin Rho

Wireless sensor networks (WSNs) are widely used in the area of health informatics. Wireless and wearable sensors have become prevalent devices to monitor patients at risk for chronic diseases. This helps ascertain that patients comply by the treatment plans and also safeguard them during sudden attacks. The amount of data that are gathered from various sensors is numerous. In this paper, we propose to use fog computing to help monitor patients suffering from chronic diseases such that the data are collected and processed in an efficient manner. The main challenge would be to only sort out context-sensitive data that are relevant to the health of the patient. Just having a simple sensor-to-cloud architecture is not viable, and this is where having a fog computing layer makes a difference. This increases the efficiency of the entire system, as it not only reduces the amount of data that is transported back and forth between the cloud and the sensors but also eliminates the risk that a data center failure bears with it. We also analyze the security and deployment issues of this fog computing layer.


2014 ◽  
Vol 33 (8) ◽  
pp. 95-108 ◽  
Author(s):  
P. Charalambous ◽  
Y. Chrysanthou

2021 ◽  
Vol 11 (23) ◽  
pp. 11187
Author(s):  
Xadya van Bruxvoort ◽  
Maurice van Keulen

In the transition to a data-driven society, organizations have introduced data-driven algorithms that often apply artificial intelligence. In this research, an ethical framework was developed to ensure robustness and completeness and to avoid and mitigate potential public uproar. We take a socio-technical perspective, i.e., view the algorithm embedded in an organization with infrastructure, rules, and procedures as one to-be-designed system. The framework consists of five ethical principles: beneficence, non-maleficence, autonomy, justice, and explicability. It can be used during the design for identification of relevant concerns. The framework has been validated by applying it to real-world fraud detection cases: Systeem Risico Indicatie (SyRI) of the Dutch government and the algorithm of the municipality of Amersfoort. The former is a controversial country-wide algorithm that was ultimately prohibited by court. The latter is an algorithm in development. In both cases, it proved effective in identifying all ethical risks. For SyRI, all concerns found in the media were also identified by the framework, mainly focused on transparency of the entire socio-technical system. For the municipality of Amersfoort, the framework highlighted risks regarding the amount of sensitive data and communication to and with the public, presenting a more thorough overview compared to the risks the media raised.


2022 ◽  
Vol 32 (1) ◽  
pp. 1-33
Author(s):  
Jinghui Zhong ◽  
Dongrui Li ◽  
Zhixing Huang ◽  
Chengyu Lu ◽  
Wentong Cai

Data-driven crowd modeling has now become a popular and effective approach for generating realistic crowd simulation and has been applied to a range of applications, such as anomaly detection and game design. In the past decades, a number of data-driven crowd modeling techniques have been proposed, providing many options for people to generate virtual crowd simulation. This article provides a comprehensive survey of these state-of-the-art data-driven modeling techniques. We first describe the commonly used datasets for crowd modeling. Then, we categorize and discuss the state-of-the-art data-driven crowd modeling methods. After that, data-driven crowd model validation techniques are discussed. Finally, six promising future research topics of data-driven crowd modeling are discussed.


Sign in / Sign up

Export Citation Format

Share Document