scholarly journals Combining peer-to-peer and cloud computing for large scale on-line games

2013 ◽  
Vol 5 (3) ◽  
pp. 13-14 ◽  
Author(s):  
Emanuele Carlini
Author(s):  
Suresh Annamalai ◽  
Udendhran R.

In this chapter, the authors introduced cloudsim simulator and cloud computing role in online social networking. The communication incurred by other activities such as management jobs is negligible. Social relationships can be established for numerous reasons. For example, family members, colleagues, or classmates often have strong social interactions resulting in large communication load. Cloud computing as well as social network-based applications will become dominant in many aspects of life in the next few decades. The performance of such large-scale systems is characterized by system capacity in terms of number of users/clients, flexibility, scalability, and effective cost of operation, etc. Popular social networks have hundreds of millions of users and continue to grow.


2018 ◽  
Vol 31 (5-6) ◽  
pp. 227-233
Author(s):  
Weitao Wang ◽  
◽  
Baoshan Wang ◽  
Xiufen Zheng ◽  

2020 ◽  
Vol 15 (7) ◽  
pp. 750-757
Author(s):  
Jihong Wang ◽  
Yue Shi ◽  
Xiaodan Wang ◽  
Huiyou Chang

Background: At present, using computer methods to predict drug-target interactions (DTIs) is a very important step in the discovery of new drugs and drug relocation processes. The potential DTIs identified by machine learning methods can provide guidance in biochemical or clinical experiments. Objective: The goal of this article is to combine the latest network representation learning methods for drug-target prediction research, improve model prediction capabilities, and promote new drug development. Methods: We use large-scale information network embedding (LINE) method to extract network topology features of drugs, targets, diseases, etc., integrate features obtained from heterogeneous networks, construct binary classification samples, and use random forest (RF) method to predict DTIs. Results: The experiments in this paper compare the common classifiers of RF, LR, and SVM, as well as the typical network representation learning methods of LINE, Node2Vec, and DeepWalk. It can be seen that the combined method LINE-RF achieves the best results, reaching an AUC of 0.9349 and an AUPR of 0.9016. Conclusion: The learning method based on LINE network can effectively learn drugs, targets, diseases and other hidden features from the network topology. The combination of features learned through multiple networks can enhance the expression ability. RF is an effective method of supervised learning. Therefore, the Line-RF combination method is a widely applicable method.


2020 ◽  
Vol 29 (2) ◽  
pp. 1-24
Author(s):  
Yangguang Li ◽  
Zhen Ming (Jack) Jiang ◽  
Heng Li ◽  
Ahmed E. Hassan ◽  
Cheng He ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 176
Author(s):  
Peng Zheng ◽  
Zebin Wu ◽  
Jin Sun ◽  
Yi Zhang ◽  
Yaoqin Zhu ◽  
...  

As the volume of remotely sensed data grows significantly, content-based image retrieval (CBIR) becomes increasingly important, especially for cloud computing platforms that facilitate processing and storing big data in a parallel and distributed way. This paper proposes a novel parallel CBIR system for hyperspectral image (HSI) repository on cloud computing platforms under the guide of unmixed spectral information, i.e., endmembers and their associated fractional abundances, to retrieve hyperspectral scenes. However, existing unmixing methods would suffer extremely high computational burden when extracting meta-data from large-scale HSI data. To address this limitation, we implement a distributed and parallel unmixing method that operates on cloud computing platforms in parallel for accelerating the unmixing processing flow. In addition, we implement a global standard distributed HSI repository equipped with a large spectral library in a software-as-a-service mode, providing users with HSI storage, management, and retrieval services through web interfaces. Furthermore, the parallel implementation of unmixing processing is incorporated into the CBIR system to establish the parallel unmixing-based content retrieval system. The performance of our proposed parallel CBIR system was verified in terms of both unmixing efficiency and accuracy.


Author(s):  
Junshu Wang ◽  
Guoming Zhang ◽  
Wei Wang ◽  
Ka Zhang ◽  
Yehua Sheng

AbstractWith the rapid development of hospital informatization and Internet medical service in recent years, most hospitals have launched online hospital appointment registration systems to remove patient queues and improve the efficiency of medical services. However, most of the patients lack professional medical knowledge and have no idea of how to choose department when registering. To instruct the patients to seek medical care and register effectively, we proposed CIDRS, an intelligent self-diagnosis and department recommendation framework based on Chinese medical Bidirectional Encoder Representations from Transformers (BERT) in the cloud computing environment. We also established a Chinese BERT model (CHMBERT) trained on a large-scale Chinese medical text corpus. This model was used to optimize self-diagnosis and department recommendation tasks. To solve the limited computing power of terminals, we deployed the proposed framework in a cloud computing environment based on container and micro-service technologies. Real-world medical datasets from hospitals were used in the experiments, and results showed that the proposed model was superior to the traditional deep learning models and other pre-trained language models in terms of performance.


2014 ◽  
Vol 687-691 ◽  
pp. 3733-3737
Author(s):  
Dan Wu ◽  
Ming Quan Zhou ◽  
Rong Fang Bie

Massive image processing technology requires high requirements of processor and memory, and it needs to adopt high performance of processor and the large capacity memory. While the single or single core processing and traditional memory can’t satisfy the need of image processing. This paper introduces the cloud computing function into the massive image processing system. Through the cloud computing function it expands the virtual space of the system, saves computer resources and improves the efficiency of image processing. The system processor uses multi-core DSP parallel processor, and develops visualization parameter setting window and output results using VC software settings. Through simulation calculation we get the image processing speed curve and the system image adaptive curve. It provides the technical reference for the design of large-scale image processing system.


Sign in / Sign up

Export Citation Format

Share Document