Virtual gait analysis tool to test lower limb prosthesis

Author(s):  
Daniele Regazzoni ◽  
Andrea Vitali ◽  
Giorgio Colombo ◽  
Caterina Rizzi
2021 ◽  
Author(s):  
P. Senthil Selvam ◽  
M. Sandhiya ◽  
K. Chandrasekaran ◽  
D. Hepzibah Rubella ◽  
S. Karthikeyan

The Chapter will include a brief note on Amputation, Particularly Lower Limb Amputation (LLA), Levels and Causes of LLA. Importance of Prosthetics for LLA are explained in detail. The types of Prosthesis, Application (Donning & Doffing) of prosthesis are included in this chapter. Diagrammatic representation of the prosthesis are added too. Bio mechanical component is explained in detail within this chapter. The advantages and disadvantages of each and every Lower limb Prosthesis are clearly mentioned. Moreover, the Gait analysis & Training after the application of prosthesis are discussed. The reader will get a complete picture of Prosthetics for Lower limb Amputation by going through this chapter for lower limb prosthesis.


2018 ◽  
Vol 64 ◽  
pp. 30-37 ◽  
Author(s):  
Gerasimos Bastas ◽  
Joshua J. Fleck ◽  
Richard A. Peters ◽  
Karl E. Zelik

2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Jonathan Realmuto ◽  
Glenn Klute ◽  
Santosh Devasia

This article studies the design of passive elastic elements to reduce the actuator requirements for powered ankle prostheses. The challenge is to achieve most of the typically nonlinear ankle response with the passive element so that the active ankle-torque from the actuator can be small. The main contribution of this article is the design of a cam-based lower-limb prosthesis to achieve such a nonlinear ankle response. Results are presented to show that the addition of the cam-based passive element can reduce the peak actuator torque requirement substantially, by ∼74%. Moreover, experimental results are presented to demonstrate that the cam-based design can achieve a desired nonlinear response to within 10%.


2018 ◽  
Vol 43 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Saffran Möller ◽  
David Rusaw ◽  
Kerstin Hagberg ◽  
Nerrolyn Ramstrand

Background: Individuals using a lower-limb prosthesis indicate that they need to concentrate on every step they take. Despite self-reports of increased cognitive demand, there is limited understanding of the link between cognitive processes and walking when using a lower-limb prosthesis. Objective: The objective was to assess cortical brain activity during level walking in individuals using different prosthetic knee components and compare them to healthy controls. It was hypothesized that the least activity would be observed in the healthy control group, followed by individuals using a microprocessor-controlled prosthetic knee and finally individuals using a non-microprocessor-controlled prosthetic knee. Study design: Cross-sectional study. Methods: An optical brain imaging system was used to measure relative changes in concentration of oxygenated and de-oxygenated haemoglobin in the frontal and motor cortices during level walking. The number of steps and time to walk 10 m was also recorded. The 6-min walk test was assessed as a measure of functional capacity. Results: Individuals with a transfemoral or knee-disarticulation amputation, using non-microprocessor-controlled prosthetic knee ( n = 14) or microprocessor-controlled prosthetic knee ( n = 15) joints and healthy controls ( n = 16) participated in the study. A significant increase was observed in cortical brain activity of individuals walking with a non-microprocessor-controlled prosthetic knee when compared to healthy controls ( p < 0.05) and individuals walking with an microprocessor-controlled prosthetic knee joint ( p < 0.05). Conclusion: Individuals walking with a non-microprocessor-controlled prosthetic knee demonstrated an increase in cortical brain activity compared to healthy individuals. Use of a microprocessor-controlled prosthetic knee was associated with less cortical brain activity than use of a non-microprocessor-controlled prosthetic knee. Clinical relevance Increased understanding of cognitive processes underlying walking when using different types of prosthetic knees can help to optimize selection of prosthetic components and provide an opportunity to enhance functioning with a prosthesis.


PM&R ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 344-353 ◽  
Author(s):  
Janis Kim ◽  
Matthew J. Major ◽  
Brian Hafner ◽  
Andrew Sawers

Sign in / Sign up

Export Citation Format

Share Document