An Artificial Cell Simulator based on Artificial Chemistry

Author(s):  
Chien-Le Goh ◽  
Hong Tat Ewe ◽  
Yong Kheng Goh
Author(s):  
Richard Montione ◽  
Muhammad Ashraf

Osmolarity of a fixative vehicle has long been known to have an effect on the tissue preservation. An increase in tissue osmolarity occurs in ischemia-damaged tissue and affects the morphology. In this study, we examined cellular changes in ischemic rat myocardium induced by varying fixative toxicity.Rats were sacrificed by decapitation and the hearts immediately removed and retrogradily perfused through the aorta with anoxic Kurbs-Henseleit medium. Hearts were then placed in a bag with a small amount of medium at 37°C for 90 minutes. Hearts were perfusion-fixed using 2% glutaraldehyde in 0.1 M cacodylate buffer pH -7.3 at three osmolarities. The isotonic buffer was adjusted to 311 mOsm/kg using D-manitol. Hypertonic buffers were adjusted to 375 and 400 mOsm/kg. One-half hour after perfusion fixation, the hearts were sliced and cut into small blocks and allowed to fix overnight at 4°C. Blocks were post fixed in osmium, en bloc stained in uranyl acetate, dehydrated in ethanol and embedded in Spurr medium.


2003 ◽  
Vol 68 (1) ◽  
pp. 139-177 ◽  
Author(s):  
Vladimír Kvasnička ◽  
Jiří Pospíchal

A simplified model of Darwinian evolution at the molecular level is studied by applying the methods of artificial chemistry. A chemical reactor (chemostat) contains molecules that are represented by binary strings, the strings being capable of replication with a probability proportional to their fitness. Moreover, the process of replication is not fully precise, sporadic mutations may produce new offspring strings, which are slightly different from their parent templates. The dynamics of such an autoreplicating system is described by Eigen's differential equations. These equations have a unique asymptotically stable state, which corresponds to those strings that have the highest rate constants (fitness). Fitness of binary string is calculated as a graph-theory similarity between a folding (phenotype) of respective string and the so-called required folding. The presented method offers a detailed view of mechanisms of the molecular Darwinian evolution, in particular of the meaning and importance of neutral mutations.


ACS Omega ◽  
2019 ◽  
Vol 4 (7) ◽  
pp. 12727-12735 ◽  
Author(s):  
Jiang Ni ◽  
Ying Sun ◽  
Jinfang Song ◽  
Yiqing Zhao ◽  
Qiufang Gao ◽  
...  

Nanoscale ◽  
2020 ◽  
Vol 12 (18) ◽  
pp. 10189-10195 ◽  
Author(s):  
Xin Zhao ◽  
Dongyang Tang ◽  
Ying Wu ◽  
Shaoqing Chen ◽  
Cheng Wang

The artifical cell system for the gene therapy of cancer might be a promising approach for the reversal of neoplastic progress of cancer cells.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 223
Author(s):  
Boying Xu ◽  
Jinquan Ding ◽  
Jian Xu ◽  
Tetsuya Yomo

(1) Background: giant vesicles (GVs) are widely employed as models for studying physicochemical properties of bio-membranes and artificial cell construction due to their similarities to natural cell membranes. Considering the critical roles of GVs, various methods have been developed to prepare them. Notably, the water-in-oil (w/o) inverted emulsion-transfer method is reported to be the most promising, owning to the relatively higher productivity and better encapsulation efficiency of biomolecules. Previously, we successfully established an improved approach to acquire detailed information of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-derived GVs with imaging flow cytometry (IFC); (2) Methods: we prepared GVs with different lipid compositions, including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and PC/PE mixtures by w/o inverted emulsion methods. We comprehensively compared the yield, purity, size, and encapsulation efficiency of the resulting vesicles; (3) Results: the relatively higher productivities of GVs could be obtained from POPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE), DOPC: DLPE (7:3), and POPC: DLPE (6:4) pools. Furthermore, we also demonstrate that these GVs are stable during long term preservation in 4 °C. (4) Conclusions: our results will be useful for the analytical study of GVs and GV-based applications.


Author(s):  
Raheel Ahmad ◽  
Christin Kleineberg ◽  
Vahid Nasirimarekani ◽  
Yu-Jung Su ◽  
Samira Goli Pozveh ◽  
...  

2013 ◽  
Vol 41 (5) ◽  
pp. 1159-1165 ◽  
Author(s):  
Shiksha Mantri ◽  
K. Tanuj Sapra

Realization of a functional artificial cell, the so-called protocell, is a major challenge posed by synthetic biology. A subsequent goal is to use the protocellular units for the bottom-up assembly of prototissues. There is, however, a looming chasm in our knowledge between protocells and prototissues. In the present paper, we give a brief overview of the work on protocells to date, followed by a discussion on the rational design of key structural elements specific to linking two protocellular bilayers. We propose that designing synthetic parts capable of simultaneous insertion into two bilayers may be crucial in the hierarchical assembly of protocells into a functional prototissue.


Sign in / Sign up

Export Citation Format

Share Document