natural cell
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 38)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Jingyi Li ◽  
Yanwei Sun ◽  
Feiyun Liu ◽  
Yao Zhou ◽  
Yunfeng Yan ◽  
...  

AbstractNADPH provides the reducing power for decomposition of reactive oxygen species (ROS), making it an indispensable part during ROS defense. It remains uncertain, however, if living cells respond to the ROS challenge with an elevated intracellular NADPH level or a more complex NADPH-mediated manner. Herein, we employed a model fungus Aspergillus nidulans to probe this issue. A conditional expression of glucose-6-phosphate dehydrogenase (G6PD)-strain was constructed to manipulate intracellular NADPH levels. As expected, turning down the cellular NADPH concentration drastically lowered the ROS response of the strain; it was interesting to note that increasing NADPH levels also impaired fungal H2O2 resistance. Further analysis showed that excess NADPH promoted the assembly of the CCAAT-binding factor AnCF, which in turn suppressed NapA, a transcriptional activator of PrxA (the key NADPH-dependent ROS scavenger), leading to low antioxidant ability. In natural cell response to oxidative stress, we noticed that the intracellular NADPH level fluctuated “down then up” in the presence of H2O2. This might be the result of a co-action of the PrxA-dependent NADPH consumption and NADPH-dependent feedback of G6PD. The fluctuation of NADPH is well correlated to the formation of AnCF assembly and expression of NapA, thus modulating the ROS defense. Our research elucidated how A. nidulans precisely controls NADPH levels for ROS defense. Graphical Abstract


2022 ◽  
Author(s):  
Yao Lu ◽  
Giulia Allegri ◽  
Jurriaan Huskens

The construction of artificial cells with specific cell-mimicking functions helps to explore complex biological processes and cell functions in natural cell systems, and provides insight into the origins of life....


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1533
Author(s):  
Thelvia I. Ramos ◽  
Carlos A. Villacis-Aguirre ◽  
Nelson Santiago Vispo ◽  
Leandro Santiago Padilla ◽  
Seidy Pedroso Santana ◽  
...  

Interferons (IFNs) are cytokines involved in the immune response that act on innate and adaptive immunity. These proteins are natural cell-signaling glycoproteins expressed in response to viral infections, tumors, and biological inducers and constitute the first line of defense of vertebrates against infectious agents. They have been marketed for more than 30 years with considerable impact on the global therapeutic protein market thanks to their diversity in terms of biological activities. They have been used as single agents or with combination treatment regimens, demonstrating promising clinical results, resulting in 22 different formulations approved by regulatory agencies. The 163 clinical trials with currently active IFNs reinforce their importance as therapeutics for human health. However, their application has presented difficulties due to the molecules’ size, sensitivity to degradation, and rapid elimination from the bloodstream. For some years now, work has been underway to obtain new drug delivery systems to provide adequate therapeutic concentrations for these cytokines, decrease their toxicity and prolong their half-life in the circulation. Although different research groups have presented various formulations that encapsulate IFNs, to date, there is no formulation approved for use in humans. The current review exhibits an updated summary of all encapsulation forms presented in the scientific literature for IFN-α, IFN-ß, and IFN-γ, from the year 1996 to the year 2021, considering parameters such as: encapsulating matrix, route of administration, target, advantages, and disadvantages of each formulation.


Author(s):  
Thelvia I. Ramos ◽  
Carlos A Villacis ◽  
Nelson Santiago Vispo ◽  
Leandro Santiago Padilla ◽  
Seidy Pedroso Santana ◽  
...  

Interferons (IFNs) are cytokines involved in the immune response that act on innate and adaptive immunity. These proteins are natural cell-signaling glycoproteins expressed in response to viral infections, tumors, and biological inducers and constitute the first line of defense of vertebrates against infectious agents. They have been marketed for more than 30 years with considerable impact on the global therapeutic protein market thanks to their diversity in terms of biological activities. They have been used as single agents or with combination treatment regimens, demonstrating promising clinical results, resulting in 22 different formulations approved by regulatory agencies. The 163 clinical trials with currently active IFNs reinforce their importance as therapeutics for human health. However, their application has presented difficulties due to the molecules’ size, sensitivity to degradation, and rapid elimination from the bloodstream. For some years now, work has been underway to obtain new drug delivery systems to provide adequate therapeutic concentrations for these cytokines, decrease their toxicity and prolong their half-life in the circulation. Although different research groups have presented various formulations that encapsulate IFNs, to date, there is no formulation approved for use in humans. The current review exhibits an updated summary of all encapsulation forms presented in the scientific literature for these cytokines IFNα, IFNß, and IFNγ, from the year 1996 to the year 2021, considering parameters such as: encapsulating matrix, route of administration, and encapsulation.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 916
Author(s):  
Andrea Ruffini ◽  
Monica Sandri ◽  
Massimiliano Dapporto ◽  
Elisabetta Campodoni ◽  
Anna Tampieri ◽  
...  

Material science is a relevant discipline in support of regenerative medicine. Indeed, tissue regeneration requires the use of scaffolds able to guide and sustain the natural cell metabolism towards tissue regrowth. This need is particularly important in musculoskeletal regeneration, such as in the case of diseased bone or osteocartilaginous regions for which calcium phosphate-based scaffolds are considered as the golden solution. However, various technological barriers related to conventional ceramic processing have thus far hampered the achievement of biomimetic and bioactive scaffolds as effective solutions for still unmet clinical needs in orthopaedics. Driven by such highly impacting socioeconomic needs, new nature-inspired approaches promise to make a technological leap forward in the development of advanced biomaterials. The present review illustrates ion-doped apatites as biomimetic materials whose bioactivity resides in their unstable chemical composition and nanocrystallinity, both of which are, however, destroyed by the classical sintering treatment. In the following, recent nature-inspired methods preventing the use of high-temperature treatments, based on (i) chemically hardening bioceramics, (ii) biomineralisation process, and (iii) biomorphic transformations, are illustrated. These methods can generate products with advanced biofunctional properties, particularly biomorphic transformations represent an emerging approach that could pave the way to a technological leap forward in medicine and also in various other application fields.


2021 ◽  
Vol 12 ◽  
Author(s):  
M. Brennan Harris ◽  
Chia-Hua Kuo

GRAPHICAL ABSTRACTExercise decreases abdominal fat mass, especially at high intensity. This outcome is not causally associated with fat burning, but better explained by carbon and nitrogen redistribution. Since abdominal fat tissue constantly releases fatty acids into circulation under post-absorptive condition with natural cell deaths, exercise diverts more post-meal carbon and nitrogen to muscle for energy repletion and cell regeneration after phagocytosis and stem cell homing. This in turn leads to concurrent fat mass loss and muscle mass gain. Respiratory ventilation during high-intensity aerobic exercise amplifies the competition for post-meal carbon and nitrogen against adipose tissues.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2518
Author(s):  
Courtney R. Lynch ◽  
Pierre P. D. Kondiah ◽  
Yahya E. Choonara

Tissue engineering is known to encompass multiple aspects of science, medicine and engineering. The development of systems which are able to promote the growth of new cells and tissue components are vital in the treatment of severe tissue injury and damage. This can be done through a variety of different biofabrication strategies including the use of hydrogels, 3D bioprinted scaffolds and nanotechnology. The incorporation of stem cells into these systems and the advantage of this is also discussed. Biopolymers, those which have a natural original, have been particularly advantageous in tissue engineering systems as they are often found within the extracellular matrix of the human body. The utilization of biopolymers has become increasing popular as they are biocompatible, biodegradable and do not illicit an immune response when placed into the body. Tissue engineering systems for use with the eye are also discussed. This is of particular interest as the eye is known as an immune privileged site resulting in an extremely limited ability for natural cell regeneration.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 223
Author(s):  
Boying Xu ◽  
Jinquan Ding ◽  
Jian Xu ◽  
Tetsuya Yomo

(1) Background: giant vesicles (GVs) are widely employed as models for studying physicochemical properties of bio-membranes and artificial cell construction due to their similarities to natural cell membranes. Considering the critical roles of GVs, various methods have been developed to prepare them. Notably, the water-in-oil (w/o) inverted emulsion-transfer method is reported to be the most promising, owning to the relatively higher productivity and better encapsulation efficiency of biomolecules. Previously, we successfully established an improved approach to acquire detailed information of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-derived GVs with imaging flow cytometry (IFC); (2) Methods: we prepared GVs with different lipid compositions, including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and PC/PE mixtures by w/o inverted emulsion methods. We comprehensively compared the yield, purity, size, and encapsulation efficiency of the resulting vesicles; (3) Results: the relatively higher productivities of GVs could be obtained from POPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE), DOPC: DLPE (7:3), and POPC: DLPE (6:4) pools. Furthermore, we also demonstrate that these GVs are stable during long term preservation in 4 °C. (4) Conclusions: our results will be useful for the analytical study of GVs and GV-based applications.


Sign in / Sign up

Export Citation Format

Share Document