Empirical Evaluation on Synthetic Data Generation with Generative Adversarial Network

Author(s):  
Pei-Hsuan Lu ◽  
Pang-Chieh Wang ◽  
Chia-Mu Yu
2020 ◽  
Author(s):  
Belén Vega-Márquez ◽  
Cristina Rubio-Escudero ◽  
Isabel Nepomuceno-Chamorro

Abstract The generation of synthetic data is becoming a fundamental task in the daily life of any organization due to the new protection data laws that are emerging. Because of the rise in the use of Artificial Intelligence, one of the most recent proposals to address this problem is the use of Generative Adversarial Networks (GANs). These types of networks have demonstrated a great capacity to create synthetic data with very good performance. The goal of synthetic data generation is to create data that will perform similarly to the original dataset for many analysis tasks, such as classification. The problem of GANs is that in a classification problem, GANs do not take class labels into account when generating new data, it is treated as any other attribute. This research work has focused on the creation of new synthetic data from datasets with different characteristics with a Conditional Generative Adversarial Network (CGAN). CGANs are an extension of GANs where the class label is taken into account when the new data is generated. The performance of our results has been measured in two different ways: firstly, by comparing the results obtained with classification algorithms, both in the original datasets and in the data generated; secondly, by checking that the correlation between the original data and those generated is minimal.


2018 ◽  
Vol 26 (3) ◽  
pp. 228-241 ◽  
Author(s):  
Mrinal Kanti Baowaly ◽  
Chia-Ching Lin ◽  
Chao-Lin Liu ◽  
Kuan-Ta Chen

AbstractObjectiveThe aim of this study was to generate synthetic electronic health records (EHRs). The generated EHR data will be more realistic than those generated using the existing medical Generative Adversarial Network (medGAN) method.Materials and MethodsWe modified medGAN to obtain two synthetic data generation models—designated as medical Wasserstein GAN with gradient penalty (medWGAN) and medical boundary-seeking GAN (medBGAN)—and compared the results obtained using the three models. We used 2 databases: MIMIC-III and National Health Insurance Research Database (NHIRD), Taiwan. First, we trained the models and generated synthetic EHRs by using these three 3 models. We then analyzed and compared the models’ performance by using a few statistical methods (Kolmogorov–Smirnov test, dimension-wise probability for binary data, and dimension-wise average count for count data) and 2 machine learning tasks (association rule mining and prediction).ResultsWe conducted a comprehensive analysis and found our models were adequately efficient for generating synthetic EHR data. The proposed models outperformed medGAN in all cases, and among the 3 models, boundary-seeking GAN (medBGAN) performed the best.DiscussionTo generate realistic synthetic EHR data, the proposed models will be effective in the medical industry and related research from the viewpoint of providing better services. Moreover, they will eliminate barriers including limited access to EHR data and thus accelerate research on medical informatics.ConclusionThe proposed models can adequately learn the data distribution of real EHRs and efficiently generate realistic synthetic EHRs. The results show the superiority of our models over the existing model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji Eun Park ◽  
Dain Eun ◽  
Ho Sung Kim ◽  
Da Hyun Lee ◽  
Ryoung Woo Jang ◽  
...  

AbstractGenerative adversarial network (GAN) creates synthetic images to increase data quantity, but whether GAN ensures meaningful morphologic variations is still unknown. We investigated whether GAN-based synthetic images provide sufficient morphologic variations to improve molecular-based prediction, as a rare disease of isocitrate dehydrogenase (IDH)-mutant glioblastomas. GAN was initially trained on 500 normal brains and 110 IDH-mutant high-grade astocytomas, and paired contrast-enhanced T1-weighted and FLAIR MRI data were generated. Diagnostic models were developed from real IDH-wild type (n = 80) with real IDH-mutant glioblastomas (n = 38), or with synthetic IDH-mutant glioblastomas, or augmented by adding both real and synthetic IDH-mutant glioblastomas. Turing tests showed synthetic data showed reality (classification rate of 55%). Both the real and synthetic data showed that a more frontal or insular location (odds ratio [OR] 1.34 vs. 1.52; P = 0.04) and distinct non-enhancing tumor margins (OR 2.68 vs. 3.88; P < 0.001), which become significant predictors of IDH-mutation. In an independent validation set, diagnostic accuracy was higher for the augmented model (90.9% [40/44] and 93.2% [41/44] for each reader, respectively) than for the real model (84.1% [37/44] and 86.4% [38/44] for each reader, respectively). The GAN-based synthetic images yield morphologically variable, realistic-seeming IDH-mutant glioblastomas. GAN will be useful to create a realistic training set in terms of morphologic variations and quality, thereby improving diagnostic performance in a clinical model.


2007 ◽  
Author(s):  
Marek K. Jakubowski ◽  
David Pogorzala ◽  
Timothy J. Hattenberger ◽  
Scott D. Brown ◽  
John R. Schott

2004 ◽  
pp. 211-234 ◽  
Author(s):  
Lewis Girod ◽  
Ramesh Govindan ◽  
Deepak Ganesan ◽  
Deborah Estrin ◽  
Yan Yu

2021 ◽  
Author(s):  
Maria Lyssenko ◽  
Christoph Gladisch ◽  
Christian Heinzemann ◽  
Matthias Woehrle ◽  
Rudolph Triebel

Author(s):  
Petr Marek ◽  
Vishal Ishwar Naik ◽  
Anuj Goyal ◽  
Vincent Auvray

Author(s):  
Chi Seng Pun ◽  
Lei Wang ◽  
Hoi Ying Wong

Modern day trading practice resembles a thought experiment, where investors imagine various possibilities of future stock market and invest accordingly. Generative adversarial network (GAN) is highly relevant to this trading practice in two ways. First, GAN generates synthetic data by a neural network that is technically indistinguishable from the reality, which guarantees the reasonableness of the experiment. Second, GAN generates multitudes of fake data, which implements half of the experiment. In this paper, we present a new architecture of GAN and adapt it to portfolio risk minimization problem by adding a regression network to GAN (implementing the second half of the experiment). The new architecture is termed GANr. Battling against two distinctive networks: discriminator and regressor, GANr's generator aims to simulate a stock market that is close to the reality while allow for all possible scenarios. The resulting portfolio resembles a robust portfolio with data-driven ambiguity. Our empirical studies show that GANr portfolio is more resilient to bleak financial scenarios than CLSGAN and LASSO portfolios.


Sign in / Sign up

Export Citation Format

Share Document