VuLCAN: A Low-cost, Low-power Embedded Visible Light Communication And Networking Platform

Author(s):  
Artem Ageev ◽  
Emiliano Luci ◽  
Chiara Petrioli ◽  
Nupur Thakker
2019 ◽  
Vol 9 (23) ◽  
pp. 5103 ◽  
Author(s):  
Nguyen Cong Hoan ◽  
Nguyen Van Hoa ◽  
Vu Thanh Luan ◽  
Yeong Min Jang

Wireless technologies that are based on radio frequencies are currently widely used, with numerous applications around the world. However, they pose some disadvantages to human health. High frequencies can have potentially harmful effects on children, hospital patients, and even healthy people if the signal power exceeds the permitted standard. Conversely, the use of visible light for data transmission is a trend that presents new options, including optical wireless communication, optical camera communication, and visible light communication. This paper proposes a modulation scheme based on on-off keying in the time domain, which is applied to a monitoring system using optical camera communication. This scheme has various compatible supports for the global-shutter camera and rolling-shutter camera, which are popular commercially available cameras. Furthermore, this scheme facilitates a low-cost monitoring system. By using small light-emitting diodes (LEDs) and controlling the exposure time in a single camera, the camera, as a receiver, can simultaneously detect signals from up to 10 sensor devices in different positions at a maximum distance of up to 50 m, with a low error rate.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Simarpreet Kaur ◽  
Mahendra Kumar ◽  
Ashu Verma

AbstractWe demonstrated a full duplex hybrid passive optical network and indoor optical wireless system employing coherent optical frequency division multiplexing. To accomplish reliable transmission in passive optical networks integrated visible-light communication (VLC), yellow light-emitting diode and infrared LED is used in downstream and upstream, respectively, for intra building network. In order to support high data rate, pulse-width reduction scheme based on dispersion compensation fiber is incorporated and system successfully covered the distance of 50 km. A data stream at the rate of 30 Gb/s is transmitted for each user out of eight users. VLC-supported users are catered with the bit rate of 1.87 Gb/s over 150 cm and in order to realize a low-cost system, visible and infrared LEDs are used in downlink and uplink, respectively.


Author(s):  
Tusher Chakraborty ◽  
Md. Nasim ◽  
Sakib Md. Bin Malek ◽  
Md. Taksir Hasan Majumder ◽  
Md. Samiul Saeef ◽  
...  

Author(s):  
M.S. M. Gismalla ◽  
M.F. L. Abdullah

Visible light communication VLC is deemed as futuristic technology applied for both illumination and data communication due to the low-cost energy consumption, long life expectancy, huge bandwidth, and high security compared to radio frequency RF. Uncovered area, minimum signal-to-noise ratio (SNR) and received power results from the non-uniform distribution of small base stations (i.e. Optical attocells) in the room. In this paper, the researchers propose a new LEDs distribution of five optical attocells configuration model in order to optimize the received power distribution and SNR at the center of the room for indoor VLC system. The optical attocells configuration in terms of received power to fill the uncovered area at the center of the room has been investigated. The simulation results showed that the proposed attocells configuration saved 24.9% of the transmitted power. Besides that, the whole room was covered uniformly.  As a result, the received power and SNR are improved.


2021 ◽  
Author(s):  
Shimaa Naser ◽  
Lina Bariah ◽  
sami muhaidat ◽  
Mahmoud Al-Qutayri ◽  
Ernesto Damiani ◽  
...  

<div>Visible light communication is envisaged as a promising enabling technology for sixth generation (6G) and beyond networks. It was introduced as a key enabler for reliable massive-scale connectivity, mainly thanks to its simple and low-cost implementation which require minor variations to the existing indoor lighting systems. The key features of VLC allow offloading data traffic from the current congested radio frequency (RF) spectrum in order to achieve effective short-range, high speed, and green communications. However, several challenges prevent the realization of the full potentials of VLC, namely the limited modulation bandwidth of light emitting diodes, the interference resulted from ambient light, the effects of optical diffuse reflection, the non-linearity of devices, and the random receiver orientation. Meanwhile, centralized machine learning (ML) techniques have exhibited great potentials in handling different challenges in communication systems. Specifically, it has been recently shown that ML algorithms exhibit superior capabilities in handling complicated network tasks, such as channel equalization, estimation and modeling, resources allocation, opportunistic spectrum access control, non-linearity compensation, performance monitoring, detection, decoding/encoding, and network optimization. Nevertheless, concerns relating to privacy and communication overhead when sharing raw data of the involved clients with a server constitute major bottlenecks in large-scale implementation of centralized ML techniques. This has motivated the emergence of a new distributed ML paradigm, namely federated learning (FL). This method can reduce the cost associated with transferring the raw data, and preserve clients privacy by training ML model locally and collaboratively at the clients side. Thus, the integration of FL in VLC networks can provide ubiquitous and reliable implementation of VLC systems. Based on this, for the first time in the open literature, we provide an overview about VLC technology and FL. Then, we introduce FL and its integration in VLC networks and provide an overview on the main design aspects. Finally, we highlight some interesting future research directions of FL that are envisioned to boost the performance of VLC systems. </div>


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1382 ◽  
Author(s):  
A B M Mohaimenur Rahman ◽  
Ting Li ◽  
Yu Wang

Because of the limitations of the Global Positioning System (GPS) in indoor scenarios, various types of indoor positioning or localization technologies have been proposed and deployed. Wireless radio signals have been widely used for both communication and localization purposes due to their popular availability in indoor spaces. However, the accuracy of indoor localization based purely on radio signals is still not perfect. Recently, visible light communication (VLC) has made use of electromagnetic radiation from light sources for transmitting data. The potential for deploying visible light communication for indoor localization has been investigated in recent years. Visible-light-based localization enjoys low deployment cost, high throughput, and high security. In this article, the most recent advances in visible-light-based indoor localization systems have been reviewed. We strongly believe that visible-light-based localization will become a low-cost and feasible complementary solution for indoor localization and other smart building applications.


Sign in / Sign up

Export Citation Format

Share Document