Hardware System Performance Enhancement Method in the Design Stage for Automotive Engine Mount Control Module

Author(s):  
JeongHyun Cho ◽  
HyunKi Ryu
2020 ◽  
Vol 14 ◽  
Author(s):  
Keerti Tiwari

: Multiple-input multiple-output (MIMO) systems have been endorsed to enable future wireless communication requirements. The efficient system designing appeals an appropriate channel model, that considers all the dominating effects of wireless environment. Therefore, some complex or less analytically acquiescent composite channel models have been proposed typically for single-input single-output (SISO) systems. These models are explicitly employed for mobile applications, though, we need a specific study of a model for MIMO system which can deal with radar clutters and different indoor/outdoor and mobile communication environments. Subsequently, the performance enhancement of MIMO system is also required in such scenario. The system performance enhancement can be examined by low error rate and high capacity using spatial diversity and spatial multiplexing respectively. Furthermore, for a more feasible and practical system modeling, we require a generalized noise model along with a composite channel model. Thus, all the patents related to MIMO channel models are revised to achieve the near optimal system performance in real world scenario. This review paper offers the methods to improve MIMO system performance in less and severe fading as well as shadowing environment and focused on a composite Weibull-gamma fading model. The development is the collective effects of selecting the appropriate channel models, spatial multiplexing/detection and spatial diversity techniques both at the transmitter and the receivers in the presence of arbitrary noise.


2014 ◽  
Vol 986-987 ◽  
pp. 235-238
Author(s):  
Xiao Long Tan ◽  
Jia Zhou ◽  
Wen Bin Wang

For the simulation of wind turbine, the wind speed is extremely important parameters and indicators to measure the output power of the unit is the wind load. Therefore, in the airflow dynamics and simulation of wind loads before establishing an accurate wind speed model is crucial. At present, the application for wind turbines COMSOL fan, fan blades and wind load simulation field, the extremely important wind speed model is not perfect, most of the research is confined to a single constant wind speed, wind speed virtually ignored the magnitude and direction of change, on changes over time and space at the same time is one of the few studies of wind, so find a way to accurately describe the range of wind speeds, and can be combined well with COMSOL method can greatly improve the aerodynamic performance of wind turbines the overall level of .


Author(s):  
Anna Witkowska ◽  
Roman Śmierzchalski

The article discusses the problem of designing a proper and efficient adaptive course-keeping control system for a seagoing ship based on the adaptive backstepping method. The proposed controller in the design stage takes into account the dynamic properties of the steering gear and the full nonlinear static maneuvering characteristic. The adjustable parameters of the achieved nonlinear control structure were tuned up by using the genetic algorithm in order to optimize the system performance. A realistic full-scale simulation model of the B-481 type vessel including wave and wind effects was applied to simulate the control algorithm by using time domain analysis.


Author(s):  
David C. Jensen ◽  
Irem Y. Tumer ◽  
Tolga Kurtoglu

Software-driven hardware configurations account for the majority of modern complex systems. The often costly failures of such systems can be attributed to software specific, hardware specific, or software/hardware interaction failures. The understanding of the propagation of failures in a complex system is critical because, while a software component may not fail in terms of loss of function, a software operational state can cause an associated hardware failure. The least expensive phase of the product life cycle to address failures is during the design stage. This results in a need to evaluate how a combined software/hardware system behaves and how failures propagate from a design stage analysis framework. Historical approaches to modeling the reliability of these systems have analyzed the software and hardware components separately. As a result significant work has been done to model and analyze the reliability of either component individually. Research into interfacing failures between hardware and software has been largely on the software side in modeling the behavior of software operating on failed hardware. This paper proposes the use of high-level system modeling approaches to model failure propagation in combined software/hardware system. Specifically, this paper presents the use of the Function-Failure Identification and Propagation (FFIP) framework for system level analysis. This framework is applied to evaluate nonlinear failure propagation within the Reaction Control System Jet Selection of the NASA space shuttle, specifically, for the redundancy management system. The redundancy management software is a subset of the larger data processing software and is involved in jet selection, warning systems, and pilot control. The software component that monitors for leaks does so by evaluating temperature data from the fuel and oxidizer injectors and flags a jet as having a failure by leak if the temperature data is out of bounds for three or more cycles. The end goal is to identify the most likely and highest cost paths for fault propagation in a complex system as an effective way to enhance the reliability of a system. Through the defining of functional failure propagation modes and path evaluation, a complex system designer can evaluate the effectiveness of system monitors and comparing design configurations.


2020 ◽  
Vol 170 ◽  
pp. 01030
Author(s):  
Aditya Bawane ◽  
Sanjay Lakade ◽  
Virendra Bhojwani

Solar energy is available in abundant quantity which can be utilized for thermal and power generation applications. The maximum solar energy extraction for application is challenging. This review focuses on the performance enhancement of parabolic trough collector. Heat transfer through absorber tube, various nanofluids with concentration is stated. Thermal efficiency increases due to the use of parabolic collector with booster reflector and glass cover over the system performance. The complex 3D analysis (ANSYS) gives accurate distribution of heat flux over the absorber tube.


2007 ◽  
Vol 16 (05) ◽  
pp. 745-767
Author(s):  
SUMITKUMAR N. PAMNANI ◽  
DEEPAK N. AGARWAL ◽  
GANG QU ◽  
DONALD YEUNG

Performance-enhancement techniques improve CPU speed at the cost of other valuable system resources such as power and energy. Software prefetching is one such technique, tolerating memory latency for high performance. In this article, we quantitatively study this technique's impact on system performance and power/energy consumption. First, we demonstrate that software prefetching achieves an average of 36% performance improvement with 8% additional energy consumption and 69% higher power consumption on six memory-intensive benchmarks. Then we combine software prefetching with a (unrealistic) static voltage scaling technique to show that this performance gain can be converted to an average of 48% energy saving. This suggests that it is promising to build low power systems with techniques traditionally known for performance enhancement. We thus propose a practical online profiling based dynamic voltage scaling (DVS) algorithm. The algorithm monitors system's performance and adapts the voltage level accordingly to save energy while maintaining the observed system performance. Our proposed online profiling DVS algorithm achieves 38% energy saving without any significant performance loss.


2019 ◽  
Vol 1153 ◽  
pp. 46-51 ◽  
Author(s):  
Emilia Florina Binchiciu ◽  
Nicușor Alin Sîrbu ◽  
Ionelia Voiculescu ◽  
Victor Geantă ◽  
Gabriela Victoria Mnerie

The paper presents the current state of researches carried out in order to improve homogeneity of mixtures for metallic powders; our priority is those with different participation in the mixture, by mechanical alloying. Mixtures of this type are used in the production of welding and related materials.Recently, research has been done to improve deposited metal properties by welding with coated electrodes, by depositing nanostructures, with uncertain results due to the low degree of homogeneity of blends involved in the electrode coating.The performance enhancement method for coated rods, developed by introducing in their coat activating precursors, used for brazing, is well known. The solution to improve the degree of homogeneity of alloying systems by mechanical alloying has been successfully applied for the manufacture of coated electrodes and those tubular with a composite core which are deposited by manual welding or TIG welding, type Fe25% Cr-4% W-V-Ti-La. The grouping of powder components for mechanical alloying was done in such a way that, finally, we have groups with the granulation, respectively specific weight, close and a low potential of segregation.The method of mechanical alloying of the components was used in the manufacture of coated rods in order to improve the fluidity of silver-rich buffer layers deposited in order to favor the diffusion phenomena of brazing alloys in the base materials.Testing the homogeneity of the alloying systems was performed indirectly by metallographic analysis and sclerometric tests.


Sign in / Sign up

Export Citation Format

Share Document