A Semi-supervised Learning Approach Based on Adaptive Weighted Fusion for Automatic Image Annotation

Author(s):  
Zhixin Li ◽  
Lan Lin ◽  
Canlong Zhang ◽  
Huifang Ma ◽  
Weizhong Zhao ◽  
...  

To learn a well-performed image annotation model, a large number of labeled samples are usually required. Although the unlabeled samples are readily available and abundant, it is a difficult task for humans to annotate large numbers of images manually. In this article, we propose a novel semi-supervised approach based on adaptive weighted fusion for automatic image annotation that can simultaneously utilize the labeled data and unlabeled data to improve the annotation performance. At first, two different classifiers, constructed based on support vector machine and covolutional neural network, respectively, are trained by different features extracted from the labeled data. Therefore, these two classifiers are independently represented as different feature views. Then, the corresponding features of unlabeled images are extracted and input into these two classifiers, and the semantic annotation of images can be obtained respectively. At the same time, the confidence of corresponding image annotation can be measured by an adaptive weighted fusion strategy. After that, the images and its semantic annotations with high confidence are submitted to the classifiers for retraining until a certain stop condition is reached. As a result, we can obtain a strong classifier that can make full use of unlabeled data. Finally, we conduct experiments on four datasets, namely, Corel 5K, IAPR TC12, ESP Game, and NUS-WIDE. In addition, we measure the performance of our approach with standard criteria, including precision, recall, F-measure, N+, and mAP. The experimental results show that our approach has superior performance and outperforms many state-of-the-art approaches.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Nalindren Naicker ◽  
Timothy Adeliyi ◽  
Jeanette Wing

Educational Data Mining (EDM) is a rich research field in computer science. Tools and techniques in EDM are useful to predict student performance which gives practitioners useful insights to develop appropriate intervention strategies to improve pass rates and increase retention. The performance of the state-of-the-art machine learning classifiers is very much dependent on the task at hand. Investigating support vector machines has been used extensively in classification problems; however, the extant of literature shows a gap in the application of linear support vector machines as a predictor of student performance. The aim of this study was to compare the performance of linear support vector machines with the performance of the state-of-the-art classical machine learning algorithms in order to determine the algorithm that would improve prediction of student performance. In this quantitative study, an experimental research design was used. Experiments were set up using feature selection on a publicly available dataset of 1000 alpha-numeric student records. Linear support vector machines benchmarked with ten categorical machine learning algorithms showed superior performance in predicting student performance. The results of this research showed that features like race, gender, and lunch influence performance in mathematics whilst access to lunch was the primary factor which influences reading and writing performance.


2019 ◽  
Vol 3 (3) ◽  
pp. 165-186 ◽  
Author(s):  
Chenliang Li ◽  
Shiqian Chen ◽  
Yan Qi

Abstract Filtering out irrelevant documents and classifying the relevant ones into topical categories is a de facto task in many applications. However, supervised learning solutions require extravagant human efforts on document labeling. In this paper, we propose a novel seed-guided topic model for dataless short text classification and filtering, named SSCF. Without using any labeled documents, SSCF takes a few “seed words” for each category of interest, and conducts short text filtering and classification in a weakly supervised manner. To overcome the issues of data sparsity and imbalance, the short text collection is mapped to a collection of pseudodocuments, one for each word. SSCF infers two kinds of topics on pseudo-documents: category-topics and general-topics. Each category-topic is associated with one category of interest, covering the meaning of the latter. In SSCF, we devise a novel word relevance estimation process based on the seed words, for hidden topic inference. The dominating topic of a short text is identified through post inference and then used for filtering and classification. On two real-world datasets in two languages, experimental results show that our proposed SSCF consistently achieves better classification accuracy than state-of-the-art baselines. We also observe that SSCF can even achieve superior performance than the supervised classifiers supervised latent dirichlet allocation (sLDA) and support vector machine (SVM) on some testing tasks.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Wojciech Wieczorek ◽  
Olgierd Unold

The present paper is a novel contribution to the field of bioinformatics by using grammatical inference in the analysis of data. We developed an algorithm for generating star-free regular expressions which turned out to be good recommendation tools, as they are characterized by a relatively high correlation coefficient between the observed and predicted binary classifications. The experiments have been performed for three datasets of amyloidogenic hexapeptides, and our results are compared with those obtained using the graph approaches, the current state-of-the-art methods in heuristic automata induction, and the support vector machine. The results showed the superior performance of the new grammatical inference algorithm on fixed-length amyloid datasets.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Zhangang Hao ◽  
Hongwei Ge ◽  
Tianpeng Gu

With the progress of network technology, there are more and more digital images of the internet. But most images are not semantically marked, which makes it difficult to retrieve and use. In this paper, a new algorithm is proposed to automatically annotate images based on particle swarm optimization (PSO) and support vector clustering (SVC). The algorithm includes two stages: firstly, PSO algorithm is used to optimize SVC; secondly, the trained SVC algorithm is used to annotate the image automatically. In the experiment, three datasets are used to evaluate the algorithm, and the results show the effectiveness of the algorithm.


Author(s):  
Ji Zhang ◽  
Yannis Kalantidis ◽  
Marcus Rohrbach ◽  
Manohar Paluri ◽  
Ahmed Elgammal ◽  
...  

Large scale visual understanding is challenging, as it requires a model to handle the widely-spread and imbalanced distribution of 〈subject, relation, object〉 triples. In real-world scenarios with large numbers of objects and relations, some are seen very commonly while others are barely seen. We develop a new relationship detection model that embeds objects and relations into two vector spaces where both discriminative capability and semantic affinity are preserved. We learn a visual and a semantic module that map features from the two modalities into a shared space, where matched pairs of features have to discriminate against those unmatched, but also maintain close distances to semantically similar ones. Benefiting from that, our model can achieve superior performance even when the visual entity categories scale up to more than 80,000, with extremely skewed class distribution. We demonstrate the efficacy of our model on a large and imbalanced benchmark based of Visual Genome that comprises 53,000+ objects and 29,000+ relations, a scale at which no previous work has been evaluated at. We show superiority of our model over competitive baselines on the original Visual Genome dataset with 80,000+ categories. We also show state-of-the-art performance on the VRD dataset and the scene graph dataset which is a subset of Visual Genome with 200 categories.


2020 ◽  
Vol 17 (6) ◽  
pp. 847-856
Author(s):  
Shengbing Ren ◽  
Xiang Zhang

The problem of synthesizing adequate inductive invariants lies at the heart of automated software verification. The state-of-the-art machine learning algorithms for synthesizing invariants have gradually shown its excellent performance. However, synthesizing disjunctive invariants is a difficult task. In this paper, we propose a method k++ Support Vector Machine (SVM) integrating k-means++ and SVM to synthesize conjunctive and disjunctive invariants. At first, given a program, we start with executing the program to collect program states. Next, k++SVM adopts k-means++ to cluster the positive samples and then applies SVM to distinguish each positive sample cluster from all negative samples to synthesize the candidate invariants. Finally, a set of theories founded on Hoare logic are adopted to check whether the candidate invariants are true invariants. If the candidate invariants fail the check, we should sample more states and repeat our algorithm. The experimental results show that k++SVM is compatible with the algorithms for Intersection Of Half-space (IOH) and more efficient than the tool of Interproc. Furthermore, it is shown that our method can synthesize conjunctive and disjunctive invariants automatically


Sign in / Sign up

Export Citation Format

Share Document