scholarly journals Linear Support Vector Machines for Prediction of Student Performance in School-Based Education

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Nalindren Naicker ◽  
Timothy Adeliyi ◽  
Jeanette Wing

Educational Data Mining (EDM) is a rich research field in computer science. Tools and techniques in EDM are useful to predict student performance which gives practitioners useful insights to develop appropriate intervention strategies to improve pass rates and increase retention. The performance of the state-of-the-art machine learning classifiers is very much dependent on the task at hand. Investigating support vector machines has been used extensively in classification problems; however, the extant of literature shows a gap in the application of linear support vector machines as a predictor of student performance. The aim of this study was to compare the performance of linear support vector machines with the performance of the state-of-the-art classical machine learning algorithms in order to determine the algorithm that would improve prediction of student performance. In this quantitative study, an experimental research design was used. Experiments were set up using feature selection on a publicly available dataset of 1000 alpha-numeric student records. Linear support vector machines benchmarked with ten categorical machine learning algorithms showed superior performance in predicting student performance. The results of this research showed that features like race, gender, and lunch influence performance in mathematics whilst access to lunch was the primary factor which influences reading and writing performance.

2010 ◽  
Vol 07 (01) ◽  
pp. 59-80
Author(s):  
D. CHENG ◽  
S. Q. XIE ◽  
E. HÄMMERLE

Local descriptor matching is the most overlooked stage of the three stages of the local descriptor process, and this paper proposes a new method for matching local descriptors based on support vector machines. Results from experiments show that the developed method is more robust for matching local descriptors for all image transformations considered. The method is able to be integrated with different local descriptor methods, and with different machine learning algorithms and this shows that the approach is sufficiently robust and versatile.


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. WB113-WB126 ◽  
Author(s):  
Matthew J. Cracknell ◽  
Anya M. Reading

Inductive machine learning algorithms attempt to recognize patterns in, and generalize from empirical data. They provide a practical means of predicting lithology, or other spatially varying physical features, from multidimensional geophysical data sets. It is for this reason machine learning approaches are increasing in popularity for geophysical data inference. A key motivation for their use is the ease with which uncertainty measures can be estimated for nonprobabilistic algorithms. We have compared and evaluated the abilities of two nonprobabilistic machine learning algorithms, random forests (RF) and support vector machines (SVM), to recognize ambiguous supervised classification predictions using uncertainty calculated from estimates of class membership probabilities. We formulated a method to establish optimal uncertainty threshold values to identify and isolate the maximum number of incorrect predictions while preserving most of the correct classifications. This is illustrated using a case example of the supervised classification of surface lithologies in a folded, structurally complex, metamorphic terrain. We found that (1) the use of optimal uncertainty thresholds significantly improves overall classification accuracy of RF predictions, but not those of SVM, by eliminating the maximum number of incorrectly classified samples while preserving the maximum number of correctly classified samples; (2) RF, unlike SVM, was able to exploit dependencies and structures contained within spatially varying input data; and (3) high RF prediction uncertainty is spatially coincident with transitions in lithology and associated contact zones, and regions of intense deformation. Uncertainty has its upside in the identification of areas of key geologic interest and has wide application across the geosciences, where transition zones are important classes in their own right. The techniques used in this study are of practical value in prioritizing subsequent geologic field activities, which, with the aid of this analysis, may be focused on key lithology contacts and problematic localities.


Author(s):  
André Filipe de Moraes Batista ◽  
João Luiz Miraglia ◽  
Thiago Henrique Rizzi Donato ◽  
Alexandre Dias Porto Chiavegatto Filho

AbstractThe coronavirus disease (COVID-19) pandemic has increased the necessity of immediate clinical decisions and effective usage of healthcare resources. Currently, the most validated diagnosis test for COVID-19 (RT-PCR) is in shortage in most developing countries, which may increase infection rates and delay important preventive measures. The objective of this study was to predict the risk of positive COVID-19 diagnosis with machine learning, using as predictors only results from emergency care admission exams. We collected data from 235 adult patients from the Hospital Israelita Albert Einstein in São Paulo, Brazil, from 17 to 30 of March, 2020, of which 102 (43%) received a positive diagnosis of COVID-19 from RT-PCR tests. Five machine learning algorithms (neural networks, random forests, gradient boosting trees, logistic regression and support vector machines) were trained on a random sample of 70% of the patients, and performance was tested on new unseen data (30%). The best predictive performance was obtained by the support vector machines algorithm (AUC: 0.85; Sensitivity: 0.68; Specificity: 0.85; Brier Score: 0.16). The three most important variables for the predictive performance of the algorithm were the number of lymphocytes, leukocytes and eosinophils, respectively. In conclusion, we found that targeted decisions for receiving COVID-19 tests using only routinely-collected data is a promising new area with the use of machine learning algorithms.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yao Huimin

With the development of cloud computing and distributed cluster technology, the concept of big data has been expanded and extended in terms of capacity and value, and machine learning technology has also received unprecedented attention in recent years. Traditional machine learning algorithms cannot solve the problem of effective parallelization, so a parallelization support vector machine based on Spark big data platform is proposed. Firstly, the big data platform is designed with Lambda architecture, which is divided into three layers: Batch Layer, Serving Layer, and Speed Layer. Secondly, in order to improve the training efficiency of support vector machines on large-scale data, when merging two support vector machines, the “special points” other than support vectors are considered, that is, the points where the nonsupport vectors in one subset violate the training results of the other subset, and a cross-validation merging algorithm is proposed. Then, a parallelized support vector machine based on cross-validation is proposed, and the parallelization process of the support vector machine is realized on the Spark platform. Finally, experiments on different datasets verify the effectiveness and stability of the proposed method. Experimental results show that the proposed parallelized support vector machine has outstanding performance in speed-up ratio, training time, and prediction accuracy.


Author(s):  
Nor Azizah Hitam ◽  
Amelia Ritahani Ismail

Machine Learning is part of Artificial Intelligence that has the ability to make future forecastings based on the previous experience. Methods has been proposed to construct models including machine learning algorithms such as Neural Networks (NN), Support Vector Machines (SVM) and Deep Learning. This paper presents a comparative performance of Machine Learning algorithms for cryptocurrency forecasting. Specifically, this paper concentrates on forecasting of time series data. SVM has several advantages over the other models in forecasting, and previous research revealed that SVM provides a result that is almost or close to actual result yet also improve the accuracy of the result itself. However, recent research has showed that due to small range of samples and data manipulation by inadequate evidence and professional analyzers, overall status and accuracy rate of the forecasting needs to be improved in further studies. Thus, advanced research on the accuracy rate of the forecasted price has to be done.


2011 ◽  
Vol 230-232 ◽  
pp. 625-628
Author(s):  
Lei Shi ◽  
Xin Ming Ma ◽  
Xiao Hong Hu

E-bussiness has grown rapidly in the last decade and massive amount of data on customer purchases, browsing pattern and preferences has been generated. Classification of electronic data plays a pivotal role to mine the valuable information and thus has become one of the most important applications of E-bussiness. Support Vector Machines are popular and powerful machine learning techniques, and they offer state-of-the-art performance. Rough set theory is a formal mathematical tool to deal with incomplete or imprecise information and one of its important applications is feature selection. In this paper, rough set theory and support vector machines are combined to construct a classification model to classify the data of E-bussiness effectively.


2021 ◽  
Author(s):  
Igor Miranda ◽  
Gildeberto Cardoso ◽  
Madhurananda Pahar ◽  
Gabriel Oliveira ◽  
Thomas Niesler

Predicting the need for hospitalization due to COVID-19 may help patients to seek timely treatment and assist health professionals to monitor cases and allocate resources. We investigate the use of machine learning algorithms to predict the risk of hospitalization due to COVID-19 using the patient's medical history and self-reported symptoms, regardless of the period in which they occurred. Three datasets containing information regarding 217,580 patients from three different states in Brazil have been used. Decision trees, neural networks, and support vector machines were evaluated, achieving accuracies between 79.1% to 84.7%. Our analysis shows that better performance is achieved in Brazilian states ranked more highly in terms of the official human development index (HDI), suggesting that health facilities with better infrastructure generate data that is less noisy. One of the models developed in this study has been incorporated into a mobile app that is available for public use.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8764 ◽  
Author(s):  
Siroj Bakoev ◽  
Lyubov Getmantseva ◽  
Maria Kolosova ◽  
Olga Kostyunina ◽  
Duane R. Chartier ◽  
...  

Industrial pig farming is associated with negative technological pressure on the bodies of pigs. Leg weakness and lameness are the sources of significant economic loss in raising pigs. Therefore, it is important to identify the predictors of limb condition. This work presents assessments of the state of limbs using indicators of growth and meat characteristics of pigs based on machine learning algorithms. We have evaluated and compared the accuracy of prediction for nine ML classification algorithms (Random Forest, K-Nearest Neighbors, Artificial Neural Networks, C50Tree, Support Vector Machines, Naive Bayes, Generalized Linear Models, Boost, and Linear Discriminant Analysis) and have identified the Random Forest and K-Nearest Neighbors as the best-performing algorithms for predicting pig leg weakness using a small set of simple measurements that can be taken at an early stage of animal development. Measurements of Muscle Thickness, Back Fat amount, and Average Daily Gain were found to be significant predictors of the conformation of pig limbs. Our work demonstrates the utility and relative ease of using machine learning algorithms to assess the state of limbs in pigs based on growth rate and meat characteristics.


Sign in / Sign up

Export Citation Format

Share Document