Efficient and High-Quality Seeded Graph Matching: Employing Higher-order Structural Information

2021 ◽  
Vol 15 (3) ◽  
pp. 1-31
Author(s):  
Haida Zhang ◽  
Zengfeng Huang ◽  
Xuemin Lin ◽  
Zhe Lin ◽  
Wenjie Zhang ◽  
...  

Driven by many real applications, we study the problem of seeded graph matching. Given two graphs and , and a small set of pre-matched node pairs where and , the problem is to identify a matching between and growing from , such that each pair in the matching corresponds to the same underlying entity. Recent studies on efficient and effective seeded graph matching have drawn a great deal of attention and many popular methods are largely based on exploring the similarity between local structures to identify matching pairs. While these recent techniques work provably well on random graphs, their accuracy is low over many real networks. In this work, we propose to utilize higher-order neighboring information to improve the matching accuracy and efficiency. As a result, a new framework of seeded graph matching is proposed, which employs Personalized PageRank (PPR) to quantify the matching score of each node pair. To further boost the matching accuracy, we propose a novel postponing strategy, which postpones the selection of pairs that have competitors with similar matching scores. We show that the postpone strategy indeed significantly improves the matching accuracy. To improve the scalability of matching large graphs, we also propose efficient approximation techniques based on algorithms for computing PPR heavy hitters. Our comprehensive experimental studies on large-scale real datasets demonstrate that, compared with state-of-the-art approaches, our framework not only increases the precision and recall both by a significant margin but also achieves speed-up up to more than one order of magnitude.

2016 ◽  
Vol 805 ◽  
pp. 31-51 ◽  
Author(s):  
Heng-Dong Xi ◽  
Yi-Bao Zhang ◽  
Jian-Tao Hao ◽  
Ke-Qing Xia

We present experimental studies of higher-order modes of the flow in turbulent thermal convection in cells of aspect ratio ($\unicode[STIX]{x1D6E4}$) 1 and 0.5. The working fluid is water with the Prandtl number ($Pr$) kept at around 5.0. The Rayleigh number ($Ra$) ranges from $9\times 10^{8}$ to $6\times 10^{9}$ for $\unicode[STIX]{x1D6E4}=1$ and from $1.6\times 10^{10}$ to $7.2\times 10^{10}$ for $\unicode[STIX]{x1D6E4}=0.5$. We found that in $\unicode[STIX]{x1D6E4}=1$ cells, the first mode, which corresponds to the large-scale circulation (LSC), dominates the flow. The second mode (quadrupole mode), the third mode (sextupole mode) and the fourth mode (octupole mode) are very weak, on average these higher-order modes each contains less than 4 % of the total flow energy. In $\unicode[STIX]{x1D6E4}=0.5$ cells, the first mode is still the strongest but less dominant, the second mode becomes stronger which contains 13.7 % of the total flow energy and the third and the fourth modes are also stronger (containing 6.5 % and 1.1 % of the total flow energy respectively). It is found that during a reversal/cessation, the amplitude of the second mode and the remaining modes experiences a rapid increase followed by a decrease, which is opposite to the behaviour of the amplitude of the first mode – it decreases to almost zero then rebounds. In addition, it is found that during the cessation (reversal) of the LSC, the second mode dominates, containing 51.3 % (50.1 %) of the total flow energy, which reveals that the commonly called cessation event is not the cessation of the entire flow but only the cessation of the first mode (LSC). The experiment reveals that the second mode and the remaining higher-order modes play important roles in the dynamical process of the reversal/cessation of the LSC. We also show direct evidence that the first mode is more efficient for heat transfer. Furthermore, our study reveals that, during the cessation/reversal of the LSC, $Nu$ drops to its local minimum and the minimum of $Nu$ is ahead of the minimum of the amplitude of the LSC; and reversals can be distinguished from cessations in terms of global heat transport. A direct velocity measurement reveals the flow structure of the first- and higher-order modes.


2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


Author(s):  
Michael Mutz ◽  
Anne K. Reimers ◽  
Yolanda Demetriou

Abstract Observational and experimental studies show that leisure time sporting activity (LTSA) is associated with higher well-being. However, scholars often seem to assume that 1) LTSA fosters “general” life satisfaction, thereby ignoring effects on domain satisfaction; 2) the effect of LTSA on well-being is linear and independent of a person’s general activity level; 3) the amount of LTSA is more important than the repertoire of LTSA, i.e. the number of different activities; 4) all kinds of LTSA are equal in their effects, irrespective of spatial and organisational context conditions. Using data from the German SALLSA-Study (“Sport, Active Lifestyle and Life Satisfaction”), a large-scale CAWI-Survey (N = 1008) representing the population ≥ 14 years, the paper takes a closer look on these assumptions. Findings demonstrate that LTSA is associated with general life satisfaction and domain-specific satisfaction (concerning relationships, appearance, leisure, work and health), but that the relationship is most pronounced for leisure satisfaction. Associations of sport with life satisfaction, leisure satisfaction and subjective health are non-linear, approaching an injection point from which on additional LTSA is no longer beneficial. Moreover, findings lend support to the notion that diversity in LTSA matters, as individuals with higher variation in sports activities are more satisfied. Finally, results with regard to spatial and organizational context suggest that outdoor sports and club-organized sports have additional benefits.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2111
Author(s):  
Bo-Wei Zhao ◽  
Zhu-Hong You ◽  
Lun Hu ◽  
Zhen-Hao Guo ◽  
Lei Wang ◽  
...  

Identification of drug-target interactions (DTIs) is a significant step in the drug discovery or repositioning process. Compared with the time-consuming and labor-intensive in vivo experimental methods, the computational models can provide high-quality DTI candidates in an instant. In this study, we propose a novel method called LGDTI to predict DTIs based on large-scale graph representation learning. LGDTI can capture the local and global structural information of the graph. Specifically, the first-order neighbor information of nodes can be aggregated by the graph convolutional network (GCN); on the other hand, the high-order neighbor information of nodes can be learned by the graph embedding method called DeepWalk. Finally, the two kinds of feature are fed into the random forest classifier to train and predict potential DTIs. The results show that our method obtained area under the receiver operating characteristic curve (AUROC) of 0.9455 and area under the precision-recall curve (AUPR) of 0.9491 under 5-fold cross-validation. Moreover, we compare the presented method with some existing state-of-the-art methods. These results imply that LGDTI can efficiently and robustly capture undiscovered DTIs. Moreover, the proposed model is expected to bring new inspiration and provide novel perspectives to relevant researchers.


2021 ◽  
Author(s):  
Parsoa Khorsand ◽  
Fereydoun Hormozdiari

Abstract Large scale catalogs of common genetic variants (including indels and structural variants) are being created using data from second and third generation whole-genome sequencing technologies. However, the genotyping of these variants in newly sequenced samples is a nontrivial task that requires extensive computational resources. Furthermore, current approaches are mostly limited to only specific types of variants and are generally prone to various errors and ambiguities when genotyping complex events. We are proposing an ultra-efficient approach for genotyping any type of structural variation that is not limited by the shortcomings and complexities of current mapping-based approaches. Our method Nebula utilizes the changes in the count of k-mers to predict the genotype of structural variants. We have shown that not only Nebula is an order of magnitude faster than mapping based approaches for genotyping structural variants, but also has comparable accuracy to state-of-the-art approaches. Furthermore, Nebula is a generic framework not limited to any specific type of event. Nebula is publicly available at https://github.com/Parsoa/Nebula.


2021 ◽  
Vol 149 ◽  
Author(s):  
Jincheng Wei ◽  
Shurui Guo ◽  
Enshen Long ◽  
Li Zhang ◽  
Bizhen Shu ◽  
...  

Abstract The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is highly contagious, and the coronavirus disease 2019 (COVID-19) pandemic caused by it has forced many countries to adopt ‘lockdown’ measures to prevent the spread of the epidemic through social isolation of citizens. Some countries proposed universal mask wearing as a protection measure of public health to strengthen national prevention efforts and to limit the wider spread of the epidemic. In order to reveal the epidemic prevention efficacy of masks, this paper systematically evaluates the experimental studies of various masks and filter materials, summarises the general characteristics of the filtration efficiency of isolation masks with particle size, and reveals the actual efficacy of masks by combining the volume distribution characteristics of human exhaled droplets with different particle sizes and the SARS-CoV-2 virus load of nasopharynx and throat swabs from patients. The existing measured data show that the filtration efficiency of all kinds of masks for large particles and extra-large droplets is close to 100%. From the perspective of filtering the total number of pathogens discharged in the environment and protecting vulnerable individuals from breathing live viruses, the mask has a higher protective effect. If considering the weighted average filtration efficiency with different particle sizes, the filtration efficiencies of the N95 mask and the ordinary mask are 99.4% and 98.5%, respectively. The mask can avoid releasing active viruses to the environment from the source of infection, thus maximising the protection of vulnerable individuals by reducing the probability of inhaling a virus. Therefore, if the whole society strictly implements the policy of publicly wearing masks, the risk of large-scale spread of the epidemic can be greatly reduced. Compared with the overall cost of social isolation, limited personal freedoms and forced suspension of economic activities, the inconvenience for citizens caused by wearing masks is perfectly acceptable.


2021 ◽  
Vol 502 (3) ◽  
pp. 3976-3992
Author(s):  
Mónica Hernández-Sánchez ◽  
Francisco-Shu Kitaura ◽  
Metin Ata ◽  
Claudio Dalla Vecchia

ABSTRACT We investigate higher order symplectic integration strategies within Bayesian cosmic density field reconstruction methods. In particular, we study the fourth-order discretization of Hamiltonian equations of motion (EoM). This is achieved by recursively applying the basic second-order leap-frog scheme (considering the single evaluation of the EoM) in a combination of even numbers of forward time integration steps with a single intermediate backward step. This largely reduces the number of evaluations and random gradient computations, as required in the usual second-order case for high-dimensional cases. We restrict this study to the lognormal-Poisson model, applied to a full volume halo catalogue in real space on a cubical mesh of 1250 h−1 Mpc side and 2563 cells. Hence, we neglect selection effects, redshift space distortions, and displacements. We note that those observational and cosmic evolution effects can be accounted for in subsequent Gibbs-sampling steps within the COSMIC BIRTH algorithm. We find that going from the usual second to fourth order in the leap-frog scheme shortens the burn-in phase by a factor of at least ∼30. This implies that 75–90 independent samples are obtained while the fastest second-order method converges. After convergence, the correlation lengths indicate an improvement factor of about 3.0 fewer gradient computations for meshes of 2563 cells. In the considered cosmological scenario, the traditional leap-frog scheme turns out to outperform higher order integration schemes only when considering lower dimensional problems, e.g. meshes with 643 cells. This gain in computational efficiency can help to go towards a full Bayesian analysis of the cosmological large-scale structure for upcoming galaxy surveys.


Author(s):  
Anne Spinewine ◽  
Perrine Evrard ◽  
Carmel Hughes

Abstract Purpose Polypharmacy, medication errors and adverse drug events are frequent among nursing home residents. Errors can occur at any step of the medication use process. We aimed to review interventions aiming at optimization of any step of medication use in nursing homes. Methods We narratively reviewed quantitative as well as qualitative studies, observational and experimental studies that described interventions, their effects as well as barriers and enablers to implementation. We prioritized recent studies with relevant findings for the European setting. Results Many interventions led to improvements in medication use. However, because of outcome heterogeneity, comparison between interventions was difficult. Prescribing was the most studied aspect of medication use. At the micro-level, medication review, multidisciplinary work, and more recently, patient-centered care components dominated. At the macro-level, guidelines and legislation, mainly for specific medication classes (e.g., antipsychotics) were employed. Utilization of technology also helped improve medication administration. Several barriers and enablers were reported, at individual, organizational, and system levels. Conclusion Overall, existing interventions are effective in optimizing medication use. However there is a need for further European well-designed and large-scale evaluations of under-researched intervention components (e.g., health information technology, patient-centered approaches), specific medication classes (e.g., antithrombotic agents), and interventions targeting medication use aspects other than prescribing (e.g., monitoring). Further development and uptake of core outcome sets is required. Finally, qualitative studies on barriers and enablers for intervention implementation would enable theory-driven intervention design.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4206
Author(s):  
Farhan Nawaz ◽  
Hemant Kumar ◽  
Syed Ali Hassan ◽  
Haejoon Jung

Enabled by the fifth-generation (5G) and beyond 5G communications, large-scale deployments of Internet-of-Things (IoT) networks are expected in various application fields to handle massive machine-type communication (mMTC) services. Device-to-device (D2D) communications can be an effective solution in massive IoT networks to overcome the inherent hardware limitations of small devices. In such D2D scenarios, given that a receiver can benefit from the signal-to-noise-ratio (SNR) advantage through diversity and array gains, cooperative transmission (CT) can be employed, so that multiple IoT nodes can create a virtual antenna array. In particular, Opportunistic Large Array (OLA), which is one type of CT technique, is known to provide fast, energy-efficient, and reliable broadcasting and unicasting without prior coordination, which can be exploited in future mMTC applications. However, OLA-based protocol design and operation are subject to network models to characterize the propagation behavior and evaluate the performance. Further, it has been shown through some experimental studies that the most widely-used model in prior studies on OLA is not accurate for networks with networks with low node density. Therefore, stochastic models using quasi-stationary Markov chain are introduced, which are more complex but more exact to estimate the key performance metrics of the OLA transmissions in practice. Considering the fact that such propagation models should be selected carefully depending on system parameters such as network topology and channel environments, we provide a comprehensive survey on the analytical models and framework of the OLA propagation in the literature, which is not available in the existing survey papers on OLA protocols. In addition, we introduce energy-efficient OLA techniques, which are of paramount importance in energy-limited IoT networks. Furthermore, we discuss future research directions to combine OLA with emerging technologies.


Sign in / Sign up

Export Citation Format

Share Document